Skip to main content
Log in

Combined Rotation- and Scale-Invariant Texture Analysis Using Radon-Based Polar Complex Exponential Transform

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Polar complex exponential transform (PCET) is superior to pseudo Zernike moment-based method in terms of kernel generation, numerical stability and easier implementation. Their performance degrades under additive noise such as white Gaussian noise. Moreover, these methods show poor performance against directional information of texture. In this paper, a new rotation- and scale-invariant method for texture analysis using Radon transform and PCET for textured image is proposed. Scale and translation invariance is achieved by normalization process in Radon space, and rotation invariance is obtained by combining Radon transform with PCET. A k-nearest neighbor classifier is employed to classify the texture. To test and evaluate the proposed method, several sets of textures were experimented with different scaling, translation and rotation in different noisy conditions. The correct classification percentage is calculated under the varying standard deviation. Experimental results show preeminence of the proposed method as compared to the existing invariant texture analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarafrazi K., Yazdi M., Abedini M.J.: A new image texture segmentation based on contourlet fractal features. Arab. J. Sci. Eng. 38(12), 3437–3449 (2013)

    Article  Google Scholar 

  2. Padma A., Sukanesh R.: Segmentation and classification of brain CT images using combined wavelet statistical texture features. Arab. J. Sci. Eng. 39(2), 767–776 (2014)

    Article  Google Scholar 

  3. Lande, M.V.; Bhanodiya, P.; Jain, P.: An effective content-based image retrieval using color, texture and shape feature. In: Intelligent Computing, Networking, and Informatics. Springer, India, pp. 1163–1170 (2014). http://link.springer.com/chapter/10.1007%2F978-81-322-1665-0_119

  4. Mosorov V., Tomczak L.: Image texture defect detection method using fuzzy C-means clustering for visual inspection systems. Arab. J. Sci. Eng. 39(4), 3013–3022 (2014)

    Article  Google Scholar 

  5. Zhang J., Tan T.: Brief review of invariant texture analysis methods. Pattern Recognit. 35(3), 735–747 (2002)

    Article  Google Scholar 

  6. Kashyap R.L., Khotanzad A.: A model-based method for rotation invariant texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 4, 472–481 (1986)

    Article  Google Scholar 

  7. Ojala, T.; Pietikainen, M.; Maenpaa, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Computer Vision-ECCV 2000, pp. 404–420. Springer, Berlin (2000)

  8. Campisi P., Neri A., Panci G., Scarano G.: Robust rotation-invariant texture classification using a model based approach. IEEE Trans. Image Process. 13(6), 782–791 (2004)

    Article  Google Scholar 

  9. Davis L.S.: Polarograms: a new tool for image texture analysis. Pattern Recogn. 13(3), 219–223 (1981)

    Article  Google Scholar 

  10. Kashyap R.L., Khotanzad A.: A model-based method for rotation invariant texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 4, 472–481 (1986)

    Article  Google Scholar 

  11. Mao J., Jain A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recogn. 25(2), 173–188 (1992)

    Article  Google Scholar 

  12. Chen J.-L., Kundu A.: Unsupervised texture segmentation using multichannel decomposition and hidden Markov models. IEEE Trans. Image Process. 4(5), 603–619 (1995)

    Article  Google Scholar 

  13. Alapati, N.K.; Sanderson, A.C.: Texture classification using multi-resolution rotation-invariant operators. Cambridge Symposium. International Society for Optics and Photonics (1985)

  14. Hongqing Z., Liu M., Ji H., Li Y.: Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal. Appl. 13(5), 309–319 (2010)

    Google Scholar 

  15. Dai, X.; Liu, T.; Shu, H.; Luo, L.: Pseudo-Zernike moment invariants to blur degradation and their use in image recognition. Intell. Sci. In: Intelligent Science and Intelligent Data Engineering. Springer, Heidelberg, pp. 90–97 (2013). http://link.springer.com/chapter/10.1007%2F978-3-642-36669-7_12

  16. Xiao B., Wang G.-Y.: Generic radial orthogonal moment invariants for invariant image recognition. J. Vis. Commun. Image Represent. 24(7), 1002–1008 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wang X., Xiao B., Ma J.-F., Bi X.-L.: Scaling and rotation invariant analysis approach to object recognition based on Radon and Fourier–Mellin transforms. Pattern Recogn. 40(12), 3503–3508 (2007)

    Article  Google Scholar 

  18. Li Y.: Reforming the theory of invariant moments for pattern recognition. Pattern Recogn. 25(7), 723–730 (1992)

    Article  Google Scholar 

  19. Hosny K.M.: New set of Gegenbauer moment invariants for pattern recognition applications. Arab. J. Sci. Eng. 39(10), 7097–7107 (2014)

    Article  Google Scholar 

  20. Estudillo-Romero A., Escalante-Ramirez B.: Rotation-invariant texture features from the steered Hermite transform. Pattern Recogn. Lett. 32(16), 2150–2162 (2011)

    Article  Google Scholar 

  21. Sedghi T.: A fast and effective model for cyclic analysis and its application in classification. Arab. J. Sci. Eng. 38(4), 927–935 (2013)

    Article  Google Scholar 

  22. Yap P.-T., Jiang X., Kot A.C.: Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2010)

    Article  Google Scholar 

  23. Noll R.J.: Zernike polynomials and atmospheric turbulence. JOsA 66(3), 207–211 (1976)

    Article  Google Scholar 

  24. Chong C.-W., Raveendran P., Mukundan R.: The scale invariants of pseudo-Zernike moments. Pattern Anal. Appl. 6(3), 176–184 (2003)

    Article  MathSciNet  Google Scholar 

  25. Li L., Li S., Abraham A., Pan J.-S.: Geometrically invariant image watermarking using polar harmonic transforms. Inf. Sci. 199, 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  26. Al-Shaykh O.K., Doherty J.F.: Invariant image analysis based on Radon transform and SVD. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 43(2), 123–133 (1996)

    Article  Google Scholar 

  27. Hiriyannaiah H.P., Ramakrishnan K.R.: Moments estimation in Radon space. Pattern Recogn. Lett. 15(3), 227–234 (1994)

    Article  Google Scholar 

  28. Easton, R.L.: The Radon Transform. In: Fourier Methods in Imaging. Wiley, Chichester (2010). http://onlinelibrary.wiley.com/doi/10.1002/9780470660102.ch12/summary

  29. Jafari-Khouzani K., Soltanian-Zadeh H.: Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms. IEEE Trans. Image Process. 14(6), 783–795 (2005)

    Article  MathSciNet  Google Scholar 

  30. Cover T.M., Hart P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  31. Christian R.A., Patel D.A.: Potential of k-means clustering-based fuzzy logic for prediction of temperature in ambient atmosphere. Arab. J. Sci. Eng. 40(1), 227–234 (2015)

    Article  Google Scholar 

  32. Tomašev, N.; Radovanović, M.; Mladenić, D.; Ivanović, M.: Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification. Int. J. Mach. Learn. Cybern. 5(3), 445–458 (2014)

  33. Henley, W.E.; Hand, D.J.: A k-nearest-neighbour classifier for assessing consumer credit risk. Statistician 77–95 (1996). http://pages.ucsd.edu/~aronatas/project/academic/Nearest%20neighbor%20analysis%20in%20credit%20scoring.pdf

  34. Brodatz P.T.: A Photographic Album for Artists and Designers. Dover, New York (1966)

    Google Scholar 

  35. Shao Z., Shu H., Wu J., Chen B., Coatrieux J.L.: Quaternion Bessel–Fourier moments and their invariant descriptors for object reconstruction and recognition. Pattern Recogn. 47(2), 603–611 (2014)

    Article  Google Scholar 

  36. Mennesson J., Saint-Jean C., Mascarilla L.: Color Fourier–Mellin descriptors for image recognition. Pattern Recogn. Lett. 40, 27–35 (2014)

    Article  Google Scholar 

  37. Guo L., Dai M., Zhu M.: Quaternion moment and its invariants for color object classification. Inf. Sci. 273, 132–143 (2014)

    Article  MathSciNet  Google Scholar 

  38. Jia X., Yang H., Ma S., Song D.: Quaternion higher-order spectra and their invariants for color image recognition. Opt. Lasers Eng. 57, 28–39 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Urooj, S. Combined Rotation- and Scale-Invariant Texture Analysis Using Radon-Based Polar Complex Exponential Transform. Arab J Sci Eng 40, 2309–2322 (2015). https://doi.org/10.1007/s13369-015-1645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1645-6

Keywords

Navigation