Regeneration of Carbon Nanotubes Exhausted with Humic Acid Using Electro-Fenton Technology

Abstract

Among the adsorbents, carbon nanotubes (CNTs) are relatively new nanomaterials which are frequently used for water purification. In this work, experiments were carried out to study the feasibility of regeneration of humic acid-exhausted CNTs using electro-Fenton process. The results showed that electro-Fenton process has high efficiency at pH equal to 3. The results also clearly indicated that the regeneration efficiency at lower molarities of H2O2 such as 0.05 is higher than at higher molarities. The results also implied that the regeneration efficiency at current density equal to 0.1 mA was 98.32 % and with increasing current density, the regeneration efficiency decreased. The regeneration efficiency at molar ratios of Fe2+:H2O2 as 0.03:10 was higher than other examined molar ratios and after five cycles of regeneration decreased to 87%. The results of the present study indicated that electro-Fenton process has high efficiency for the regeneration of CNTs exhausted with humic acid.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Peng X., Li Y., Luan Z., Di Z., Wang H., Tian B., Jia Z.: Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 376, 154–158 (2003)

    Article  Google Scholar 

  2. 2

    Naghizadeh A., Nasseri S., Nazmara S.: Removal of thrichloroetylene from water by adsorption on to multi wall carbon nanotubes. Iran J. Environ. Health Sci. Eng. 8, 317–324 (2011)

    Google Scholar 

  3. 3

    Naghizadeh A.: Comparison between activated carbon and multiwall carbon nanotubes in the removal of cadmium (II) and chromium (VI) from water solutions. J. Water Supply Res. Technol. AQUA 64, 64–73 (2015)

    Article  Google Scholar 

  4. 4

    Naghizadeh A., Nasseri S., Rashidi A.M., Rezaei R., Nabizadeh R., Mahvi A.H.: Adsorption kinetics and thermodynamics of hydrophobic natural organic matters (NOMs) removal from aqueous solution by multi-wall carbon nanotubes. Water Sci. Technol. Water Supply 13, 273–285 (2013)

    Article  Google Scholar 

  5. 5

    Helland A., Wick P., Koehler A., Schmid K., Som C.: Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115, 1125–1131 (2007)

    Article  Google Scholar 

  6. 6

    Nowack B., Bucheli T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007)

    Article  Google Scholar 

  7. 7

    Yang K., Xing B.: Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut. 145, 529–537 (2007)

    Article  Google Scholar 

  8. 8

    Chiang P.C., Chang E.E., Wu J.S.: Comparison of chemical and thermal regeneration of aromatic com- pounds on exhausted activated carbon. Water Sci. Technol. 35, 279–285 (1997)

    Article  Google Scholar 

  9. 9

    Tanthapanichakoon W., Ariyadejwanich P., Japthong P., Nakagawa K., Mukai S.R., Tamon H.: Adsorption desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res. 39, 1347–1353 (2005)

    Article  Google Scholar 

  10. 10

    Nakano Y., Hua L.Q., Nishijima W.: Biodegradation of trichloroethylene (TCE) adsorbed on granular activated carbon (GAC). Water Res. 34, 4139–4142 (2000)

    Article  Google Scholar 

  11. 11

    Salvador F., Jiménez C.S.: A new method for regenerating activated carbon by thermal desorption with liquid water under subcritical conditions. Carbon 34, 511–516 (1996)

    Article  Google Scholar 

  12. 12

    Rege S.U., Yang R.T.: Desorption by ultrasound: Phenol on activated carbon and polymeric resin. AIChE J. 44, 1519–1528 (1998)

    Article  Google Scholar 

  13. 13

    Derakhshani E., Naghizadeh A.: Ultrasound regeneration of multi wall carbon nanotubes saturated by humic acid. Desalin. Water Treat. 52, 7468–7472 (2014)

    Article  Google Scholar 

  14. 14

    Naghizadeh, A.; Nasseri, S.; Mahvi, A.H.; Rashidi, A.; Nabizadeh, R.; Rezaei Kalantary, R.: Fenton regeneration of humic acid-spent carbon nanotubes. Desalin. Water Treat. (2015). doi:10.1080/19443994.2014.900649

  15. 15

    Virkutyte J., Jegatheesan V.: Electro-Fenton, hydrogenotrophic and Fe2+ ions mediated TOC and nitrate removal from aquaculture system: different experimental strategies. Bioresource Technol. 100, 2189–2197 (2009)

    Article  Google Scholar 

  16. 16

    Duesterberg C., Cooper W., Waite T.: Fenton-mediated oxidation in the presence and absence of oxygen. Environ. Sci. Technol. 39, 5052–5058 (2005)

    Article  Google Scholar 

  17. 17

    Shen L., Yan P., Guo X., Wei H., Zheng X.: Three-dimensional electro-Fenton degradation of methyleneblue based on the composite particle electrodes of carbon nanotubes and nano-Fe3O4. Arab. J. Sci. Eng. 39, 6659–6664 (2014)

    Article  Google Scholar 

  18. 18

    Erick B., Yung-Tse H., Ruth Yu-Li Y., Suleiman M.: Electro coagulation in wastewater treatment. Water Res. 3, 495–525 (2011)

    Google Scholar 

  19. 19

    Andreozzi R., Caprio V., Insola A., Marotta R.: Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51–59 (1999)

    Article  Google Scholar 

  20. 20

    Oturan M., Brillas E.: Electrochemical advanced oxidation processes (EAOPs) for environmental applications. Port. Electrochim. Acta. 25, 1–18 (2007)

    Article  Google Scholar 

  21. 21

    Sires I., Garrido J., Rodriguez R., Brillas E., Oturan N., Oturan M.: Behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal. B Environ. 72, 382–394 (2007)

    Article  Google Scholar 

  22. 22

    Oturan M.: An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2, 4-D. J. Appl. Electrochem. 30, 475–482 (2000)

    Article  Google Scholar 

  23. 23

    Brillas E., Garrido J., Rodríguez R., Arias C., Cabot P., Centellas F.: Wastewaters by electrochemical advanced oxidation processes using a BDD anode and electrogenerated H2O2 with Fe (II) and UVA light as catalysts. Port. Electrochim. Acta 26, 15–46 (2008)

    Article  Google Scholar 

  24. 24

    Huling S., Arnold R., Jones P., Sierka R.: Predicting Fenton-driven degradation using contaminant analog. J. Environ. Eng. 126, 348–353 (2000)

    Article  Google Scholar 

  25. 25

    Teel A., Watts R.: Degradation of carbon tetrachloride by modified Fenton’s reagent. J. Haz. Mat. 94, 179–189 (2002)

    Article  Google Scholar 

  26. 26

    Berenguer R., Marco-Lozar J.P., Quijada C., Cazorla-Amorós D., Morallón E.: Comparison among chemical, thermal, and electrochemical regeneration of phenol-saturated activated carbon. Energy Fuels 24, 3366–3372 (2010)

    Article  Google Scholar 

  27. 27

    Methatham, T.; Lu, M.C.; Ratanatamskul, C.: Kinetics of electro-Fenton ferrous regeneration (EFFR) on chlorinated organic compound degradation. Desalin. Water Treat. (2014). doi:10.1080/19443994.2014.886298

  28. 28

    Pignatello J.J., Olivers E., Mackey A.: Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Env. Sci. Technol. 36, 1–84 (2006)

    Article  Google Scholar 

  29. 29

    Atmaca E.: Treatment of landfill leachate by using electro-Fenton method. J. Hazard. Mater. 163, 109–114 (2009)

    Article  Google Scholar 

  30. 30

    Hyung H., Kim J.: Natural organic matter (NOM) adsorption to multiwalled carbon nanotubes: effect of NOM characteristics and water quality parameters. J. Environ. Sci. Technol. 42, 4416–4421 (2008)

    Article  Google Scholar 

  31. 31

    Vermeer A., Van Riemsdijk W., Koopal L.: Adsorption of humic acid to mineral particles, specific and electrostatic interactions. J. Langmuir 28, 9–14 (1998)

    Google Scholar 

  32. 32

    Ritchie J., Perdue E.: Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. J. Geochim. Cosmochim. Acta 67, 85–96 (2003)

    Article  Google Scholar 

  33. 33

    Bañuelos J.A., Rodríguez F.J., Rocha J.M., Bustos E., Rodríguez A., Cruz J.C., Arriaga L.G., Godínez L.A.: Novel electro-Fenton approach for regeneration of activated carbon. Environ. Sci. Technol. 47, 7927–7933 (2013)

    Article  Google Scholar 

  34. 34

    Zongo I., Leclerc J., Maïga H., Wéthé J., Lapicque F.: Removal of hexavalent chromium from industrial wastewater by electrocoagulation: a comprehensive comparison of aluminium and iron electrodes. Sep. Purif. 26, 8–15 (2013)

    Google Scholar 

  35. 35

    Huling S., Kan E., Wingo C.: Fenton-driven regeneration of MTBE-spent granular activated carbon—effects of particle size and iron amendment procedures. J. Appl. Catal. B Environ. 6510, 7–89 (2009)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Naghizadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naghizadeh, A. Regeneration of Carbon Nanotubes Exhausted with Humic Acid Using Electro-Fenton Technology. Arab J Sci Eng 41, 155–161 (2016). https://doi.org/10.1007/s13369-015-1643-8

Download citation

Keywords

  • CNTs
  • Humid acid
  • Regeneration
  • Electro-Fenton