Arabian Journal for Science and Engineering

, Volume 41, Issue 1, pp 155–161 | Cite as

Regeneration of Carbon Nanotubes Exhausted with Humic Acid Using Electro-Fenton Technology

  • Ali NaghizadehEmail author
Research Article - Chemistry


Among the adsorbents, carbon nanotubes (CNTs) are relatively new nanomaterials which are frequently used for water purification. In this work, experiments were carried out to study the feasibility of regeneration of humic acid-exhausted CNTs using electro-Fenton process. The results showed that electro-Fenton process has high efficiency at pH equal to 3. The results also clearly indicated that the regeneration efficiency at lower molarities of H2O2 such as 0.05 is higher than at higher molarities. The results also implied that the regeneration efficiency at current density equal to 0.1 mA was 98.32 % and with increasing current density, the regeneration efficiency decreased. The regeneration efficiency at molar ratios of Fe2+:H2O2 as 0.03:10 was higher than other examined molar ratios and after five cycles of regeneration decreased to 87%. The results of the present study indicated that electro-Fenton process has high efficiency for the regeneration of CNTs exhausted with humic acid.


CNTs Humid acid Regeneration Electro-Fenton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peng X., Li Y., Luan Z., Di Z., Wang H., Tian B., Jia Z.: Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 376, 154–158 (2003)CrossRefGoogle Scholar
  2. 2.
    Naghizadeh A., Nasseri S., Nazmara S.: Removal of thrichloroetylene from water by adsorption on to multi wall carbon nanotubes. Iran J. Environ. Health Sci. Eng. 8, 317–324 (2011)Google Scholar
  3. 3.
    Naghizadeh A.: Comparison between activated carbon and multiwall carbon nanotubes in the removal of cadmium (II) and chromium (VI) from water solutions. J. Water Supply Res. Technol. AQUA 64, 64–73 (2015)CrossRefGoogle Scholar
  4. 4.
    Naghizadeh A., Nasseri S., Rashidi A.M., Rezaei R., Nabizadeh R., Mahvi A.H.: Adsorption kinetics and thermodynamics of hydrophobic natural organic matters (NOMs) removal from aqueous solution by multi-wall carbon nanotubes. Water Sci. Technol. Water Supply 13, 273–285 (2013)CrossRefGoogle Scholar
  5. 5.
    Helland A., Wick P., Koehler A., Schmid K., Som C.: Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115, 1125–1131 (2007)CrossRefGoogle Scholar
  6. 6.
    Nowack B., Bucheli T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007)CrossRefGoogle Scholar
  7. 7.
    Yang K., Xing B.: Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut. 145, 529–537 (2007)CrossRefGoogle Scholar
  8. 8.
    Chiang P.C., Chang E.E., Wu J.S.: Comparison of chemical and thermal regeneration of aromatic com- pounds on exhausted activated carbon. Water Sci. Technol. 35, 279–285 (1997)CrossRefGoogle Scholar
  9. 9.
    Tanthapanichakoon W., Ariyadejwanich P., Japthong P., Nakagawa K., Mukai S.R., Tamon H.: Adsorption desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res. 39, 1347–1353 (2005)CrossRefGoogle Scholar
  10. 10.
    Nakano Y., Hua L.Q., Nishijima W.: Biodegradation of trichloroethylene (TCE) adsorbed on granular activated carbon (GAC). Water Res. 34, 4139–4142 (2000)CrossRefGoogle Scholar
  11. 11.
    Salvador F., Jiménez C.S.: A new method for regenerating activated carbon by thermal desorption with liquid water under subcritical conditions. Carbon 34, 511–516 (1996)CrossRefGoogle Scholar
  12. 12.
    Rege S.U., Yang R.T.: Desorption by ultrasound: Phenol on activated carbon and polymeric resin. AIChE J. 44, 1519–1528 (1998)CrossRefGoogle Scholar
  13. 13.
    Derakhshani E., Naghizadeh A.: Ultrasound regeneration of multi wall carbon nanotubes saturated by humic acid. Desalin. Water Treat. 52, 7468–7472 (2014)CrossRefGoogle Scholar
  14. 14.
    Naghizadeh, A.; Nasseri, S.; Mahvi, A.H.; Rashidi, A.; Nabizadeh, R.; Rezaei Kalantary, R.: Fenton regeneration of humic acid-spent carbon nanotubes. Desalin. Water Treat. (2015). doi: 10.1080/19443994.2014.900649
  15. 15.
    Virkutyte J., Jegatheesan V.: Electro-Fenton, hydrogenotrophic and Fe2+ ions mediated TOC and nitrate removal from aquaculture system: different experimental strategies. Bioresource Technol. 100, 2189–2197 (2009)CrossRefGoogle Scholar
  16. 16.
    Duesterberg C., Cooper W., Waite T.: Fenton-mediated oxidation in the presence and absence of oxygen. Environ. Sci. Technol. 39, 5052–5058 (2005)CrossRefGoogle Scholar
  17. 17.
    Shen L., Yan P., Guo X., Wei H., Zheng X.: Three-dimensional electro-Fenton degradation of methyleneblue based on the composite particle electrodes of carbon nanotubes and nano-Fe3O4. Arab. J. Sci. Eng. 39, 6659–6664 (2014)CrossRefGoogle Scholar
  18. 18.
    Erick B., Yung-Tse H., Ruth Yu-Li Y., Suleiman M.: Electro coagulation in wastewater treatment. Water Res. 3, 495–525 (2011)Google Scholar
  19. 19.
    Andreozzi R., Caprio V., Insola A., Marotta R.: Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51–59 (1999)CrossRefGoogle Scholar
  20. 20.
    Oturan M., Brillas E.: Electrochemical advanced oxidation processes (EAOPs) for environmental applications. Port. Electrochim. Acta. 25, 1–18 (2007)CrossRefGoogle Scholar
  21. 21.
    Sires I., Garrido J., Rodriguez R., Brillas E., Oturan N., Oturan M.: Behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal. B Environ. 72, 382–394 (2007)CrossRefGoogle Scholar
  22. 22.
    Oturan M.: An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2, 4-D. J. Appl. Electrochem. 30, 475–482 (2000)CrossRefGoogle Scholar
  23. 23.
    Brillas E., Garrido J., Rodríguez R., Arias C., Cabot P., Centellas F.: Wastewaters by electrochemical advanced oxidation processes using a BDD anode and electrogenerated H2O2 with Fe (II) and UVA light as catalysts. Port. Electrochim. Acta 26, 15–46 (2008)CrossRefGoogle Scholar
  24. 24.
    Huling S., Arnold R., Jones P., Sierka R.: Predicting Fenton-driven degradation using contaminant analog. J. Environ. Eng. 126, 348–353 (2000)CrossRefGoogle Scholar
  25. 25.
    Teel A., Watts R.: Degradation of carbon tetrachloride by modified Fenton’s reagent. J. Haz. Mat. 94, 179–189 (2002)CrossRefGoogle Scholar
  26. 26.
    Berenguer R., Marco-Lozar J.P., Quijada C., Cazorla-Amorós D., Morallón E.: Comparison among chemical, thermal, and electrochemical regeneration of phenol-saturated activated carbon. Energy Fuels 24, 3366–3372 (2010)CrossRefGoogle Scholar
  27. 27.
    Methatham, T.; Lu, M.C.; Ratanatamskul, C.: Kinetics of electro-Fenton ferrous regeneration (EFFR) on chlorinated organic compound degradation. Desalin. Water Treat. (2014). doi: 10.1080/19443994.2014.886298
  28. 28.
    Pignatello J.J., Olivers E., Mackey A.: Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Env. Sci. Technol. 36, 1–84 (2006)CrossRefGoogle Scholar
  29. 29.
    Atmaca E.: Treatment of landfill leachate by using electro-Fenton method. J. Hazard. Mater. 163, 109–114 (2009)CrossRefGoogle Scholar
  30. 30.
    Hyung H., Kim J.: Natural organic matter (NOM) adsorption to multiwalled carbon nanotubes: effect of NOM characteristics and water quality parameters. J. Environ. Sci. Technol. 42, 4416–4421 (2008)CrossRefGoogle Scholar
  31. 31.
    Vermeer A., Van Riemsdijk W., Koopal L.: Adsorption of humic acid to mineral particles, specific and electrostatic interactions. J. Langmuir 28, 9–14 (1998)Google Scholar
  32. 32.
    Ritchie J., Perdue E.: Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. J. Geochim. Cosmochim. Acta 67, 85–96 (2003)CrossRefGoogle Scholar
  33. 33.
    Bañuelos J.A., Rodríguez F.J., Rocha J.M., Bustos E., Rodríguez A., Cruz J.C., Arriaga L.G., Godínez L.A.: Novel electro-Fenton approach for regeneration of activated carbon. Environ. Sci. Technol. 47, 7927–7933 (2013)CrossRefGoogle Scholar
  34. 34.
    Zongo I., Leclerc J., Maïga H., Wéthé J., Lapicque F.: Removal of hexavalent chromium from industrial wastewater by electrocoagulation: a comprehensive comparison of aluminium and iron electrodes. Sep. Purif. 26, 8–15 (2013)Google Scholar
  35. 35.
    Huling S., Kan E., Wingo C.: Fenton-driven regeneration of MTBE-spent granular activated carbon—effects of particle size and iron amendment procedures. J. Appl. Catal. B Environ. 6510, 7–89 (2009)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2015

Authors and Affiliations

  1. 1.Department of Environmental Health Engineering, School of HealthBirjand University of Medical Sciences (BUMS)BirjandIran

Personalised recommendations