Skip to main content
Log in

Surface Reforming of Diamond Particles by the Dispersion Enhancement in Common Liquids

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The dispersibility of diamond has been improved by reforming its surface with 2-propanol-2-yl \({[({\rm CH}_{3})_{2}{\rm C}^{{\cdot}}{\rm OH}]}\) radicals. These radicals were produced by the photochemical breakdown of 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (HPHMP) under ultraviolet (UV) radiations. The diamond particles were mixed with HPHMP in acetone and were placed under UV rays for the generation of required free radicals which were in situ reformed the diamond surface. Fourier transform infrared, nuclear magnetic resonance spectroscopy and scanning electron microscopy (SEM) confirmed the structural and surface reforming of diamond. The thermogravimetric analysis, thermogravimetric analysis–mass spectrometry spectrogram confirmed the surface reforming of diamond with 2-propanol-2-yl radicals. The dispersion behavior of the diamond after reforming was observed by SEM analysis and revealed an improvement in dispersibility in common solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dimitriou M.D.; Kramer E.J.; Hawker C.J.: Advanced techniques for the characterization of surface structure in polymer thin films and coatings. Arab. J. Sci. Eng. 39, 1–13 (2014)

    Article  Google Scholar 

  2. Negi S.; Dhiman S.; Sharma R.K.: Investigating the surface roughness of SLS fabricated glass-filled polyamide parts using response surface methodology. Arab. J. Sci. Eng. 39, 9161–9179 (2014)

    Article  Google Scholar 

  3. Prabhu S.; Vinayagam B.K.: Analysis of surface characteristics by electrolytic in-process dressing (ELID) technique for grinding process using single wall carbon nano tube-based nanofluids. Arab. J. Sci. Eng. 38, 1169–1178 (2013)

    Article  Google Scholar 

  4. Meydaneri F.; Saatçi B.: Thermal, electrical, microstructure and microhardness properties of the eutectic magnesium–tin. Arab. J. Sci. Eng. 39, 5815–5824 (2014)

    Article  Google Scholar 

  5. Adedayo A.V.: Characterization of graphite flakes in grey iron microstructure. Arab. J. Sci. Eng. 37, 1645–1652 (2012)

    Article  Google Scholar 

  6. Meier U.: Carbon fiber reinforced polymer cables: why? why not? what if?. Arab. J. Sci. Eng. 37, 399–411 (2012)

    Article  Google Scholar 

  7. Yasin M.; Tauqeer T.; Rahman H.U.; Karimov K.S.; San S.E.; Tunc A.V.: Polymer–fullerene bulk heterojunction-based strain-sensitive flexible organic field-effect transistor. Arab. J. Sci. Eng. 40, 257–262 (2015)

    Article  Google Scholar 

  8. Tsubota T.; Tanii S.; Ida S.; Nagata M.; Matsumoto Y.: Chemical modification of diamond surface with various carboxylic acids by radical reaction in liquid phase. Diam. Relat. Mater. 13, 1093–1097 (2004)

    Article  Google Scholar 

  9. Bigelow L.K.; D’evelyn M.P.: Role of surface and interface science in chemical vapor deposition diamond technology. Surf. Sci. 500, 986–1004 (2002)

    Article  Google Scholar 

  10. Tsubota T.; Hirabayashi O.; Ida S.; Nagaoka S.; Nagata M.; Matsumoto Y.: Chemical modification of hydrogenated diamond surface using benzoyl peroxides. Phys. Chem. Chem. Phys. 4, 806–811 (2002)

    Article  Google Scholar 

  11. Yuqun C.; Yongshan C.; Yu L.: Composition-diamond lemma for differential algebras. Arab. J. Sci. Eng. 34, 135–145 (2009)

    Google Scholar 

  12. Ida S.; Tsubota T.; Tanii S.; Nagata M.; Matsumoto Y.: Chemical modification of the diamond surface using benzoyl peroxide and dicarboxylic acids. Langmuir 19, 9693–9698 (2003)

    Article  Google Scholar 

  13. Chong K.F.; Loh K.P.; Vedula S.R.K.; Lim C.T.; Sternschulte H.; Steinmüller D.; Sheu F.; Zhong Y.L.: Cell adhesion properties on photochemically functionalized diamond. Langmuir 23, 5615–5621 (2007)

    Article  Google Scholar 

  14. Manivannan A.; Ramakrishnan L.; Seehra M.S.; Granite E.; Butler J.E.; Tryk D.A.; Fujishima A.: Mercury detection at boron doped diamond electrodes using a rotating disk technique. J. Electroanal. Chem. 577, 287–293 (2005)

    Article  Google Scholar 

  15. Sakai T.; Araki Y.; Kanazawa H.; Umezawa H.; Tachiki M.; Kawarada H.: Effect of \({{\rm Cl}^{-}}\) ionic solutions on electrolyte-solution-gate diamond field-effect transistors. Jpn. J. Appl. Phys. 41, 2595–2597 (2002)

    Article  Google Scholar 

  16. Yang W.; Auciello O.; Butler J.E.; Cai W.; Carlisle J.A.; Gerbi J.E.; Gruen D.M.; Knickerbocker T.; Lasseter T.L.; Russell J.N.; Smith L.M.; Hamers R.J.: DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1, 253–257 (2002)

    Article  Google Scholar 

  17. Tsubota T.; Ohno T.; Yoshida H.; Kusakabe K.: Introduction of molecules containing a \({{\rm NO}_{2}}\) group on diamond surface by using radical reaction in liquid phase. Diam. Relat. Mater. 15, 668–672 (2006)

    Article  Google Scholar 

  18. Tolansky S.; Miller R.; Punglia J.: Changes in orientation of etch pits produced on the cubic faces of diamond. Philos. Mag. 26, 1275–1280 (1972)

    Article  Google Scholar 

  19. Sappok R.; Boehm H.P.: Chemie der oberfläche des diamanten—II. Bildung, eigenschaften und struktur der oberflächenoxide. Carbon 6, 573–588 (1968)

    Article  Google Scholar 

  20. Sappok R.; Boehm H.P.: Chemie der oberfläche des diamanten—I. Benetzungswärmen, elektronenspinresonanz und infrarotspektren der oberflächenhydride,-halogenide und-oxide. Carbon 6, 283–295 (1968)

    Article  Google Scholar 

  21. Ando T.; Yamamoto K.; Suehara S.; Kamo J.M.; Sato Y.; Shimosaki S.; Nishitani-Gamo M.: Interaction of chlorine with hydrogenated diamond surface. J. Chin. Chem. Soc. 42, 285–292 (1995)

    Article  Google Scholar 

  22. Freedman A.; Stinespring C.D.: Fluorination of diamond (100) by atomic and molecular beams. Appl. Phys. Lett. 57, 1194–1196 (1990)

    Article  Google Scholar 

  23. Freedman A.: Halogenation of diamond (100) and (111) surfaces by atomic beams. J. Appl. Phys. 75, 3112–3120 (1994)

    Article  Google Scholar 

  24. Miller J.B.: Amines and thiols on diamond surfaces. Surf. Sci. 439, 21–33 (1999)

    Article  Google Scholar 

  25. Kruger A.: Diamond nanoparticles: jewels for chemistry and physics. Adv. Mater. 20, 2445–2449 (2008)

    Article  Google Scholar 

  26. Miller J.B.; Brown D.W.: Photochemical modification of diamond surfaces. Langmuir 12, 5809–5817 (1996)

    Article  Google Scholar 

  27. Ando T.; Nishitani-Gamo M.; Rawles R.E.; Yamamoto K.; Kamo M.; Sato Y.: Chemical modification of diamond surfaces using a chlorinated surface as an intermediate state. Diam. Relat. Mater. 5, 1136–1142 (1996)

    Article  Google Scholar 

  28. Nakamura T.; Ishihara M.; Ohana T.; Koga Y.: Chemical modification of diamond powder using photolysis of perfluoroazooctane. Chem. Commun. 7, 900–901 (2003)

    Article  Google Scholar 

  29. Ahmad M.N.; Zia K.M, Nadeem S.; Farooq T.; Anjum M.N.; Shah A.T.; Khurshid S.; Shehzad K.; Zuber M.; Yang W.: Modification of diamond particles for improved dispersion in liquid phase. Asian J. Chem. 25, 9840–9844 (2013)

    Article  Google Scholar 

  30. Ahmad M.N.; Nadeem M.; Ma Y.; Yang W.: Photochemical modification of single-walled carbon nanotubes using HPHMP photoinitiator for enhanced organic solvent dispersion. J. Mater. Sci. 45, 5591–5597 (2010)

    Article  Google Scholar 

  31. Pavia G.M.; Lampman D.L.; Kriz G.S.; Vyvyan J.A.: Introduction to Spectroscopy, 4th edn. Brooks/Cole, Belmont (2009)

    Google Scholar 

  32. Peng H.; Alemany L.B.; Margrave J.L.; Khabashesku V.N.: Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125, 15174–15182 (2003)

    Article  Google Scholar 

  33. Vacek K.; Geimer J.; Beckert D.; Mehnert R.: Radical generation from photoinitiator (IC 2959) decomposition and radical addition to acrylate. A laser photolysis fourier transform electron paramagnetic resonance study. J. Chem. Soc. Perk. Soc. Perkin Trans. 2, 2469–2471 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Nadeem Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M.N., Zia, K.M., Nadeem, S. et al. Surface Reforming of Diamond Particles by the Dispersion Enhancement in Common Liquids. Arab J Sci Eng 41, 97–103 (2016). https://doi.org/10.1007/s13369-015-1609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1609-x

Keywords

Navigation