Advertisement

Arabian Journal for Science and Engineering

, Volume 40, Issue 4, pp 1027–1044 | Cite as

Structural Damage Identification Using Response Surface-Based Multi-objective Optimization: A Comparative Study

  • Tanmoy MukhopadhyayEmail author
  • Tushar Kanti Dey
  • Rajib Chowdhury
  • Anupam Chakrabarti
Research Article - Civil Engineering

Abstract

Non-destructive structural damage identification (SDI) and quantification of damage are important issues for any engineering structure. In this study, a comparative assessment of the damage identification capability of different design of experiment (DOE) methods (such as, 2 k factorial design, central composite design, Box–Behnken design, D-optimal design and Taguchi’s OA design) used in response surface methodology (RSM) has been carried out. Three different structures (simply supported beam, spring mass damper system and fibre reinforced polymer composite bridge deck) have been used for various single and multiple damage conditions to access the comparative ability of the aforementioned methods in identifying damage addressing two critically important criteria: accuracy and computational efficiency. The study reveals that central composite design and D-optimal design are most recommendable among the five considered DOE methods for SDI. Two different input parameter screening methods (sensitivity analysis using RSM utilizing 2 k factorial design and D-optimal design, general sensitivity analysis) have been explored in this study, and their comparative performance is also discussed. It is found that both the methods used in sensitivity analysis for the purpose of input parameter screening in the damage identification process work satisfactorily. Performance of RSM-based damage identification algorithm for different DOE methods under the influence of noise has also been addressed in this paper.

Keywords

Non-destructive structural damage identification Response surface methodology Design of experiments Sensitivity analysis Multi-objective optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farrar C.R., Worden K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. A 365, 303–315 (2007)CrossRefGoogle Scholar
  2. 2.
    Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W.: Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. LANL report (LA-13070-MS) (1996)Google Scholar
  3. 3.
    Fan W., Qiao P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–29 (2011)CrossRefGoogle Scholar
  4. 4.
    Fritzen C.P.: Vibration-based structural health monitoring—concepts and applications. Key Eng. Mater. 293–294, 3–20 (2005)CrossRefGoogle Scholar
  5. 5.
    Huth O., Feltrin G., Maeck J., Kilic N., Motavalli M.: Damage identification using modal data: Experiences on a prestressed concrete bridge. J. Struct. Eng. 131, 1898–1910 (2005)CrossRefGoogle Scholar
  6. 6.
    Perera R., Fang S.E., Ruiz A.: Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modelling errors. Meccanica 45(5), 723–734 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dash K.A., Parhi D.R.: Analysis of an intelligent hybrid system for fault diagnosis in cracked structure. Arab. J. Sci. Eng. 39(2), 1337–1357 (2013)CrossRefGoogle Scholar
  8. 8.
    Sehgal, S.; Kumar, H.: Damage detection using Derringer’s function based weighted model updating method. In: Structural Health Monitoring. Conference Proceedings of the Society for Experimental Mechanics Series vol. 5, pp. 241–253 (2014)Google Scholar
  9. 9.
    Burczynski T., Beluch W.: The identification of cracks using boundary elements and evolutionary algorithms. Eng. Anal. Boundary Elem. 25(4), 313–322 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bicanic N., Chen H.P.: Damage identification in framed structures using natural frequencies. Int. J. Numer. Methods Eng. 40(23), 4451–4468 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Pandey A.K., Biswas M., Samman M.M.: Damage detection from changes in curvature mode shapes. J. Sound Vib. 145, 331–332 (1991)CrossRefGoogle Scholar
  12. 12.
    Zimmerman D.C., Kaouk M.: Structural damage detection using a minimum rank update theory. J. Vib. Acoust. 116, 222–231 (1994)CrossRefGoogle Scholar
  13. 13.
    Pandey A.K., Biswas M.: Damage detection in structures using changes in flexibility. J. Sound Vib. 169, 3–17 (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Stubbs, N.; Kim, J.T.: Field verification of a non-destructive damage localization and severity estimation algorithm. In: Texas A and M University Report, New Mexico State University (1994)Google Scholar
  15. 15.
    Banan M.R., Banan M.R., Hjelmstad K.D.: Parameter estimation of structures from static response I: computational aspects. J. Struct. Eng. 120(11), 3243–3258 (1994)CrossRefGoogle Scholar
  16. 16.
    Sanayei M., Saletnik M.J.: Parameter estimation of structures from static strain measurements II: formulation. J. Struct. Eng. 122(5), 555–562 (1996)CrossRefGoogle Scholar
  17. 17.
    Mark, W.; George, D.: A Brief Description of NDT Techniques. Insight NDT Equipment Ltd (2003)Google Scholar
  18. 18.
    McCann D.M., Forde M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 34, 71–84 (2001)CrossRefGoogle Scholar
  19. 19.
    Lim Y.Y., Bhalla S., Soh C.K.: Structural identification and damage diagnosis using self-sensing piezo-impedance transducers. Smart Mater. Struct. 15(3), 987–995 (2006)CrossRefGoogle Scholar
  20. 20.
    Naskar, S.; Bhalla, S.: Experimental investigations of metal wire based EMI technique for steel structures. In: Seventh ISSS International Conference on Smart Materials Structures and Systems ISSS (2014)Google Scholar
  21. 21.
    Chang C.C., Chen L.W.: Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach. Mech. Syst. Signal Process. 19, 139–155 (2005)CrossRefGoogle Scholar
  22. 22.
    Hein H., Feklistova L.: Computationally efficient delamination detection in composite beams using Haar wavelets. Mech. Syst. Signal Process. 25(6), 2257–2270 (2011)CrossRefGoogle Scholar
  23. 23.
    Wu N., Wang Q.: Experimental studies on damage detection of beam structures with wavelet transform. Int. J. Eng. Sci. 49, 253–261 (2011)CrossRefGoogle Scholar
  24. 24.
    Feklistova, L.; Hein, H.: Crack identification in vibrating beams using Haar wavelets and neural networks. In: Applied mechanics and materials: 2013 International Conference on Recent Trends in Materials and Mechanical Engineering, Singapore, 21–23 September (2013)Google Scholar
  25. 25.
    Katunin A., Przystałka P.: Damage assessment in composite plates using fractional wavelet transform of modal shapes with optimized selection of spatial wavelets. Eng. Appl. Artif. Intell. 30, 73–85 (2014)CrossRefGoogle Scholar
  26. 26.
    Katunin, A.; Przystałka, P.: Meta-optimization method for wavelet-based damage identification in composite structures. FedCSIS 2, 429–438 (2014). doi: 10.15439/2014F268
  27. 27.
    Fu Y.Z., Lu Z.R., Liu J.K.: Damage identification in plates using finite element model updating in time domain. J. Sound Vib. 332(26), 7018–7032 (2013)CrossRefGoogle Scholar
  28. 28.
    Moaveni, B., He, X., Conte, J.P., Callafon, R.A.D.: Damage identification of a composite beam using finite element model updating. Comput. Aided Civil Infrastruct. Eng. 23(5), 339–359 (2008)Google Scholar
  29. 29.
    Box G.E.P., Wilson K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 13, 1–45 (1951)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Myers R.H., Montgomery D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edn. Wiley, New York (2002)Google Scholar
  31. 31.
    Khuri, A.I., Mukhopadhyay, S.: Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2s(2), 128–149 (2010). doi: 10.1002/wics.73
  32. 32.
    Noordin M.Y., Venkatesh V.C., Sharif S., Elting S., Abdullah A.: Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol. 145, 46–58 (2004)CrossRefGoogle Scholar
  33. 33.
    Carpenter, W.C.: Effect of design selection on response surface performance. NASA Contractor Report 4520 (1993)Google Scholar
  34. 34.
    Lee S.H., Kwak B.M.: Response surface augmented moment method for efficient reliability analysis. Struct. Saf. 28, 261–72 (2006)CrossRefGoogle Scholar
  35. 35.
    Faravelli L.: Response surface approach of reliability analysis. J. Eng. Mech. 115(12), 2763–2781 (1989)CrossRefGoogle Scholar
  36. 36.
    Senthilkumar, N.; Tamizharasan, T.; Gobikannan, S.: Application of response surface methodology and firefly algorithm for optimizing multiple responses in turning AISI 1045 Steel. Arab. J. Sci. Eng. doi: 10.1007/s13369-014-1320-3 (2014)
  37. 37.
    Subramanian M., Sakthivel M., Sudhakaran R.: Modeling and analysis of surface roughness of AL7075-T6 in end milling process using response surface methodology. Arab. J. Sci. Eng. 29(10), 7299–7313 (2014)CrossRefGoogle Scholar
  38. 38.
    Huh J., Haldar A.: Stochastic finite-element-based seismic risk of nonlinear structures. J. Struct. Eng. 127(3), 323–329 (2001)CrossRefGoogle Scholar
  39. 39.
    Gao, X.; Low, T.S.; Chen, S.; Liu, Z.: Structural Robust Design for Torque Optimization of BLDC Spindle Motor Using Response Surface Methodology. IEEE Trans. Magn. 37(4), 2814–2817 (2001)Google Scholar
  40. 40.
    Guo, Q.T.; Zhang, L.M.: Finite element model updating based on response surface methodology. In: Proceedings of 22nd International Modal Analysis Conference (Dearborn, MI) (2004)Google Scholar
  41. 41.
    Hemez, F.M.; Wilson, A.C.; Doebling, S.W.: Design of computer experiments for improving an impact test simulation. In: 19th International Modal Analysis Conference, Kissimmee, FL (2001)Google Scholar
  42. 42.
    Cundy, A.L.; Schultze, J.F.; Hemez, F.M.; Doebling, S.W.; Bingham, D.: Variable screening methods in metamodel design for a large structural dynamics simulation. In: 20th International Modal Analysis Conference, Los Angeles, CA (2002)Google Scholar
  43. 43.
    Shinn, R.; Hemez, F.M.; Doebling, S.W.: Estimating the error in simulation prediction over the design space. In: 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA (2003)Google Scholar
  44. 44.
    Ren W.X., Chen H.B.: Finite element model updating in structural dynamics by using response surface method. Eng. Struct. 32(8), 2455–2465 (2008)CrossRefGoogle Scholar
  45. 45.
    Cundy, A.L.: Use of Response Surface Metamodels in Damage Identification of Dynamic Structures, Master thesis. Virginia Polytechnic Institute and State University (2002)Google Scholar
  46. 46.
    Cho T.: Prediction of cyclic freeze–thaw damage in concrete structures based on response surface method. Constr. Build. Mater. 21, 2031–40 (2007)CrossRefGoogle Scholar
  47. 47.
    Fang S.E., Perera R.: A response surface based damage identification technique. Smart Mater. Struct. 18, 065009 (2009)CrossRefGoogle Scholar
  48. 48.
    Casciati S.: Response surface models to detect and localize distributed cracks in a complex continuum. J. Eng. Mech. 136(9), 1131–1142 (2010)CrossRefGoogle Scholar
  49. 49.
    Unal, R.; Lepscht, R.A.; McMillin, M.L.: Response surface model building and multidisciplinary optimization using D-optimal designs. In: Annual AIAA/ NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Seventh, St. Louis, MO, USA, pp. 10–31 (1998)Google Scholar
  50. 50.
    Michael J.B., Norman R.D.: On minimum-point second-order designs. Technometrics 16(4), 613–616 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Mukhopadhyay, T.; Dey, T.K.; Dey, S.; Chakrabarti, A.: Optimization of fiber reinforced polymer web core bridge deck—a hybrid approach. Struct. Eng. Int. (2015) (in Press)Google Scholar
  52. 52.
    Hamby D.M.: A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32, 135–154 (1994)CrossRefGoogle Scholar
  53. 53.
    ABAQUS CAE 6.8. Dassault Systèmes Simulia Corp. (2008)Google Scholar
  54. 54.
    Elliott A.C., Woodward W.A.: Statistical Analysis Quick Reference Guidebook with SPSS Examples. 1st ed. Sage, London (2007)Google Scholar
  55. 55.
    Online e-book: Engineering Statistics Handbook, Publisher: NIST/SEMATECH (2003)Google Scholar
  56. 56.
    Peat J., Barton B.: Medical Statistics: A Guide to Data Analysis and Critical Appraisal. Blackwell, Oxford (2005)CrossRefGoogle Scholar
  57. 57.
    Oztuna D., Elhan A.H., Tuccar E.: Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turkish J. Med. Sci. 36(3), 171–6 (2006)Google Scholar
  58. 58.
    Thode, H.C. Jr.: Testing for Normality. Marcel Dekker, New York. Inc. ISBN 0-8247-9613-6 (2002)Google Scholar
  59. 59.
    Field A.: Discovering Statistics Using SPSS, 3rd ed. SAGE, London (2009)Google Scholar
  60. 60.
    Matlab Version 7.12.0.635 (R2011a), MathWorks Inc (2011)Google Scholar
  61. 61.
    Friswell M.I., Penny J.E.T.: Crack modeling for structural health monitoring. Struct. Health Monit. 1(2), 0139–148 (2002)CrossRefGoogle Scholar
  62. 62.
    Dey T.K., Srivastava I., Khandelwal P.R., Sharma K.U., Chakrabarti A.: Optimum design of FRP rib core bridge deck. Compos. Part B 45(1), 930–938 (2013)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2015

Authors and Affiliations

  • Tanmoy Mukhopadhyay
    • 1
    Email author
  • Tushar Kanti Dey
    • 2
  • Rajib Chowdhury
    • 2
  • Anupam Chakrabarti
    • 2
  1. 1.College of EngineeringSwansea UniversitySwanseaUK
  2. 2.Department of Civil EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations