Skip to main content

Improving State Estimation Accuracy Through Incremental Meter Placement Using New Evolutionary Strategy

Abstract

Power system network is an interconnected web of crucial electrical elements and system monitoring. It is imperative in ensuring system integrity and stability. In regard to this, state estimation is commonly employed to obtain the best estimate of the power system condition based on limited number of measurements. The placement of meters at appropriate locations is crucial in determining the accuracy of the state estimation. Hence, this paper presents a new optimal meter placement strategy for state estimation. A new evolutionary strategy for discrete optimization problem is proposed so that the location of additional meter placement will improve the accuracy of state estimation. The minimization of sum covariance error of state estimation is selected as the objective function to be minimized. Simulation results on the IEEE 30-bus system clearly shows that the proposed approach is able to outperform the conventional heuristic method in determining the optimal meter placement, which enhances the state estimation accuracy.

This is a preview of subscription content, access via your institution.

References

  1. Krumpholz G., Clements K., Davis P.: Power system observability: a practical algorithm using network topology. IEEE Trans. Power Appar. Syst. 4, 1534–1542 (1980)

    Article  Google Scholar 

  2. Monticelli A., Wu F.F.: Network observability—theory. IEEE Trans. Power Appar. Syst. 104, 1042–1048 (1985)

    Google Scholar 

  3. Monticelli, A.; Wu, F.F.: Network observability: identification of observable islands and measurement placement. IEEE Trans. Power Appar. Syst. 104, 1035–1041 (1985)

  4. Gou B., Abur A.: A direct numerical method for observability analysis. IEEE Trans. Power Syst. 15, 625–630 (2000)

    Article  Google Scholar 

  5. Korres G.N., Katsikas P.J., Clements K.A., Davis P.W.: Numerical observability analysis based on network graph theory. IEEE Trans. Power Syst. 18, 1035–1045 (2003)

    Article  Google Scholar 

  6. Korres G.N., Katsikas P.J.: A hybrid method for observability analysis using a reduced network graph theory. IEEE Trans. Power Syst. 18, 295–304 (2003)

    Article  Google Scholar 

  7. Korres G.N.: A robust method for equality constrained state estimation. IEEE Trans. Power Syst. 17, 305–314 (2002)

    Article  Google Scholar 

  8. Gou B., Abur A.: An improved measurement placement algorithm for network observability. IEEE Trans. Power Syst. 16, 819–824 (2001)

    Google Scholar 

  9. Magnago F., Abur A.: A unified approach to robust meter placement against loss of measurements and branch outages. IEEE Trans. Power Syst. 15, 945–949 (2000)

    Article  Google Scholar 

  10. Ding Q., Emesih V.A.: A simple factorization-based observability analysis and meter placement method. Int. J. Electr. Power Energy Syst. 29, 731–737 (2007)

    Article  Google Scholar 

  11. De Souza J.C.S., Brown Do C.F.M., Schilling M.T., De Capdeville C.: Optimal metering systems for monitoring power networks under multiple topological scenarios. IEEE Trans. Power Syst. 20, 1700–1708 (2005)

    Article  Google Scholar 

  12. El-Zonkoly A.: Optimal meter placement using genetic algorithm to maintain network observability. Expert Syst. Appl. 31, 193–198 (2006)

    Article  Google Scholar 

  13. Jamuna K., Swarup K.: Optimal placement of PMU and SCADA measurements for security constrained state estimation. Int. J. Electr. Power Energy Syst. 33, 1658–1665 (2011)

    Article  Google Scholar 

  14. Abur, A.: Optimal Placement of Phasor Measurement Units for State Estimation. Power Systems Engineering Research Center. (2005)

  15. Gao, Y.; Hu, Z.; He, X.; Liu, D.: Optimal placement of PMUs in power systems based on improved PSO algorithm. In: 3rd IEEE Conference on Industrial Electronics and Applications, ICIEA 2008 (2008)

  16. Ahmadi A., Alinejad-Beromi Y., Moradi M.: Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy. Expert Syst. Appl. 38, 7263–7269 (2011)

    Article  Google Scholar 

  17. Wang, J.; Li, C.; Zhang, J.: Optimal phasor measurement unit placement by an improved PSO algorithm. In: IEEE Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2012 (2012)

  18. Ramesh L., Chakraborthy N., Chowdhury S.P., Chowdhury S.: Intelligent DE algorithm for measurement location and PSO for bus voltage estimation in power distribution system. Int. J. Electr. Power Energy Syst. 39, 1–8 (2012)

    Article  Google Scholar 

  19. Jamuna K., Swarup K.S.: Biogeography based optimization for optimal meter placement for security constrained state estimation. Swarm Evol. Comput. 1, 89–96 (2011)

    Article  Google Scholar 

  20. Jamuna K., Swarup K.: Multi-objective biogeography based optimization for optimal PMU placement. Appl. Soft Comput. 12, 1503–1510 (2012)

    Article  Google Scholar 

  21. Ramachandran B., Thomas Bellarmine G.: Improving observability using optimal placement of phasor measurement units. Int. J. Electr. Power Energy Syst. 56, 55–63 (2014)

    Article  Google Scholar 

  22. Park Y.M., Moon Y.H., Choo J.B., Kwon T.W.: Design of reliable measurement system for state estimation. IEEE Trans. Power Syst. 3, 830–836 (1988)

    Article  Google Scholar 

  23. Celik M.K., Liu W.H.E.: An incremental measurement placement algorithm for state estimation. IEEE Trans. Power Syst. 10, 1698–1703 (1995)

    Article  Google Scholar 

  24. Baran M.E., Zhu J., Zhu H., Garren K.E.: A meter placement method for state estimation. IEEE Trans. Power Syst. 10, 1704–1710 (1995)

    Article  Google Scholar 

  25. Nusrat, N.; Irving, M.; Taylor, G.: Novel meter placement algorithm for enhanced accuracy of distribution system state estimation. In: IEEE Power and Energy Society General Meeting, 2012 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mokhlis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosli, H.M., Mokhlis, H., Naidu, K. et al. Improving State Estimation Accuracy Through Incremental Meter Placement Using New Evolutionary Strategy. Arab J Sci Eng 39, 7981–7989 (2014). https://doi.org/10.1007/s13369-014-1397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1397-8

Keywords

  • Evolutionary strategy
  • Meter placement
  • State estimation
  • Optimization