Skip to main content
Log in

Prediction of Surface Roughness for AISI 304 Steel with Solid Carbide Tools in End Milling Process Using Regression and ANN Models

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper focuses on two different models, namely regression mathematical and artificial neural network (ANN) models for predicting surface roughness. In the present work, surface roughness is taken as the response (output) variable measured during milling, while helix angle, spindle speed, feed and depth of cut are taken as input parameters. The design of experiments (DOE) technique is developed for four factors at five levels to conduct experiments. Experiments have been conducted for measuring surface roughness based on the DOE technique in a vertical machining centre on AISI 304 steel using an uncoated solid carbide end mill cutter. The experimental values are used in Six Sigma software for finding the coefficients to develop the regression model. The experimentally measured values are also used to train the feed-forward back-propagation ANN for the prediction of surface roughness. Predicted values of response by both models, i.e. regression and ANN, are compared with the experimental values. The predictive neural network model was found to be capable of better predictions of surface roughness within the trained range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagci E., Aykut S.: A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6). Int. J. Adv. Manuf. Technol. 29, 940–947 (2006)

    Article  Google Scholar 

  2. Yang J.L., Chen J.C.: A systematic approach for identifying optimum surface roughness performance in end-milling operations. J. Ind. Technol. 17(2), 1–8 (2001)

    Google Scholar 

  3. Shather, S.K.; Ibrheem, A.F.: Prediction of surface roughness in end-milling with multiple regression model. Eng. Tech. 26(3), 326–337 (2008)

  4. Kurt M., Bagci E., Kaynak Y.: Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. Int. J. Adv. Manuf. Technol. 40, 458–469 (2009)

    Article  Google Scholar 

  5. Thangavel P., Selladurai V.: An experimental investigation on the effect of turning parameters on surface roughness. Int. J. Manuf. Res. 3(3), 285–300 (2008)

    Article  Google Scholar 

  6. Hayajneh M.T., Tahat M.S., Bluhm J.: A study of the effects of machining parameters on the surface roughness in the end-milling process. Jordan J. Mech. Ind. Eng. 1(1), 1–5 (2007)

    Google Scholar 

  7. Routara B.C., Bandyopadhyay A., Sahoo P.: Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation. Int. J. Adv. Manuf. Technol. 40, 1166–1180 (2009)

    Article  Google Scholar 

  8. Ginta T.L., Nurul Amin A.K.M., Mohd Radzi H.C.D., Mohd Amri Lajis.: Development of surface roughness models in end milling titanium alloy Ti-6Al-4V using uncoated tungsten carbide inserts. Eur. J. Sci. Res. 28(4), 542–551 (2009)

    Google Scholar 

  9. Alauddin M.E.I., Baradie M.A., Hashmi M.S.J.: Computer-aided analysis of a Surface roughness model for end milling. J. Mater. Process. Technol. 55, 123–127 (1995)

    Article  Google Scholar 

  10. Ertekin Y.M., Kwon Y., Tseng T.L.: Identification of common sensory features for the control of CNC milling operations under varying cutting conditions. Int. J. Mach. Tools Manuf. 43, 897–904 (2003)

    Article  Google Scholar 

  11. Bhattacharya A., Das S., Majumder P., Batish A.: Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA. Prod. Eng. Res. Dev. 3, 31–40 (2009)

    Article  Google Scholar 

  12. Suresh Kumar Reddy N., Venkateswara Rao P.: Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling. Int. J. Adv. Manuf. Technol. 26, 1202–1210 (2005)

    Article  Google Scholar 

  13. Ansalam Raj, T.G.; Narayanan Namboothiri, V.N.: An improved genetic algorithm for the prediction of surface finish in dry turning of SS 420 materials. Int. J. Adv. Manuf.Technol. doi:10.1007/s00170-009-2197-2 (2009)

  14. Yang L.D., Chen J.C., Chow H.M., Lin C.T.: Fuzzy-nets-based in-process surface roughness adaptive control system in end-milling operations. Int. J. Adv. Manuf. Technol. 28, 236–248 (2006)

    Article  Google Scholar 

  15. Tsao C.C.: Grey–Taguchi method to optimize the milling parameters of aluminum alloy. Int. J. Adv. Manuf. Technol. 40, 41–48 (2009)

    Article  Google Scholar 

  16. Ozcelik B., Oktem H., Kurtaran H.: Optimum surface roughness in end milling Inconel 718 by coupling neural network model and genetic algorithm. Int. J. Adv. Manuf. Technol. 27, 234–241 (2005)

    Article  Google Scholar 

  17. Brezocnik M., Kovacic M., Ficko M.: Prediction of surface roughness with genetic programming. J.Mater. Process. Technol. 157(−158), 28–36 (2004)

    Article  Google Scholar 

  18. Chang C.K., Lu H.S.: Study on the prediction model of surface roughness for side milling operations. J. Mater. Process. Technol. 29, 867–878 (2006)

    Google Scholar 

  19. Lo S.P.: An adaptive-network based fuzzy inference system for prediction of work piece surface roughness in end milling. J. Mater. Process Technol. 142, 665–675 (2003)

    Article  Google Scholar 

  20. Pal S.K., Chakraborty D.: Surface roughness prediction in turning using artificial neural network. Neural Comput. Appl. 14, 319–324 (2005)

    Article  Google Scholar 

  21. Sivasakthivel P.S., Vel Murugan V., Sudhakaran R.: Experimental evaluation of surface roughness for end milling of Al 6063: response surface and neutral network model. Int. J. Manuf. Res. 7(1), 9–25 (2012)

    Google Scholar 

  22. Kadirgama K., Noor M.M., Rahman M.M.: Optimization of surface roughness in end milling using potential support vector machine. Arab. J. Sci. Eng. 37(8), 2269–2275 (2012)

    Article  Google Scholar 

  23. Yang J.L., Chen J.C.: A systematic approach for identifying optimum surface roughness performance in end-milling operations. J. Ind. Technol. 17(2), 1–8 (2001)

    Google Scholar 

  24. Milton Shaw M.C.: Metal Cutting Principles. Oxford University Press, New York (2005)

    Google Scholar 

  25. Montgomery D.C.: Design and Analysis of Experiments. Wiley, New York (2005)

    MATH  Google Scholar 

  26. Yang I.J., Bibby M.J., Chandel R.S.: Linear regression equations for modeling the submerged arc welding process. J. Mater. Process Technol. 39, 33–42 (1993)

    Article  Google Scholar 

  27. Vishal, S.S.; Suresh D.; Rakesh S.; Sharma, S.K.: Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 19(4), 473–483 (2008)

  28. Hagan M.T., Demuth H.B., Beale M.: Neural Network Design. Thomson Learning. Vikas Publishing House, India (1996)

    Google Scholar 

  29. Hammerstrom D.: Working with neural networks. IEEE Spectr. 30, 46–53 (1993)

    Article  Google Scholar 

  30. Kannan T., Murugan N.: Artificial neural network modelling of weld bead geometry and dilution in flux cored arc welding. Int. J. Join Mater. 18(2), 46–51 (2006)

    Google Scholar 

  31. MATLAB 7.6.: The Math Work Inc. (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalidass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalidass, S., Palanisamy, P. Prediction of Surface Roughness for AISI 304 Steel with Solid Carbide Tools in End Milling Process Using Regression and ANN Models. Arab J Sci Eng 39, 8065–8075 (2014). https://doi.org/10.1007/s13369-014-1346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1346-6

Keywords

Navigation