Skip to main content
Log in

Uncertainty Definition on the Constitutive Models for RC Columns Wrapped with FRP

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper aims to explore the effectiveness of the fiber-reinforced polymer (FRP)-confining mechanism in concrete in which parameters are uncertain. The confinement effect of high stiffness FRP jackets results an increase in the compressive strength of reinforced concrete columns and should be clearly defined. Various constitutive models have been constructed to predict the mechanical behavior of FRP-wrapped columns by considering this effect. However, the mechanical response of confined concrete columns due to FRP jackets under concentric compression has still been a challenging issue, and there are still some uncertainties in mechanical and also geometrical properties in the analysis and design procedure. These uncertainties can be studied with interval analysis (IA) to determine sharp bounds of the mechanical parameters such as effective lateral confining stress, Young’s modulus of concrete and FRP, and geometrical parameters. For this purpose, an IA has been performed using deterministic values of compressive strength for significant number (163) of experimental data being reported by several researchers on FRP-confined square/rectangular columns. The results indicate that uncertainties in material parameters and compressive strengths play an important role in determining the lateral stresses of FRP-confined columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burkil J.C.: Functions of intervals. Proc. Lond. Math. Soc. 22, 375–446 (1924)

    Google Scholar 

  2. Young R.C.: The Algebra of Many-Valued Quantities. Math. Ann. 104, 260–290 (1931)

    Article  MathSciNet  Google Scholar 

  3. Sunaga, T.: Theory of an Interval Algebra and Its Application to Numerical Analysis. RAAG Memoirs, Gaukutsu Bunkwen Fukeyu-kai. 29-46, Tokyo (1958)

  4. Moore R.E.: Interval Analysis. Prentice Hall, New Jersey (1966)

    MATH  Google Scholar 

  5. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

  6. Nuding V.E., Wilhelm J.: Über gleichungen und über lösungen (On equations and solutions). ZAMM 52, 188–190 (1972)

    Google Scholar 

  7. Qiu Z., Chen S., Elishakoff I.: Natural frequencies of structures with uncertain but non random parameters. J. Optim. Theory Appl. 86, 669–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qiu Z., Chen S., Elishakoff I.: Bounds of eigenvalues for structures with an interval description of uncertain but non random parameters. Chaos Solut. Fractals 7, 425–434 (1996)

    Article  Google Scholar 

  9. Qiu Z., Chen S., Elishakoff I., Starnes J.H. Jr.: The bound set of possible eigenvalues of structures with uncertain but non random parameters. Chaos Solut. Fractals 7, 1845–1847 (1996)

    Article  Google Scholar 

  10. Qiu Z., Chen S., Elishakoff I.: Antioptimization of structures with large uncertain but non random parameters via interval. Comput. Methods Appl. Mech. Eng. 152, 361–372 (1998)

    Article  MATH  Google Scholar 

  11. Chen S.H., Yang X.W.: Interval finite element method for beam structures. Finite Elem. Anal. Des. 34, 75–88 (2000)

    Article  MATH  Google Scholar 

  12. Chen S.H., Lian H.D., Yang X.W.: Interval eigenvalue analysis for structures with interval parameters. Finite Elem. Anal. Des. 39, 419–431 (2003)

    Article  Google Scholar 

  13. Qiu Z., Wang X.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40, 5423–5439 (2003)

    Article  MATH  Google Scholar 

  14. Gao W.: Interval finite element analysis using interval factor method. Comput. Mech. 39, 709–717 (2007)

    Article  MATH  Google Scholar 

  15. Rao M.V., Reddy R.R.: Analysis of a cable-stayed bridge with uncertainties in Young’s modulus and load—a fuzzy finite element approach. Struct. Eng. Mech. 27(3), 263–276 (2007)

    Article  Google Scholar 

  16. Gao W., Song C., Tin-Loi F.: Static response and reliability analysis of structural systems with random and interval properties. Mater. Sci. Eng. 10, 1–10 (2010)

    Google Scholar 

  17. Shao G., Su J.: Sensitivity and inverse analysis methods for parameter intervals. J. Rock Mech. Geotech. Eng. 2(3), 274–280 (2010)

    Google Scholar 

  18. Korkmaz K., Demir F., Tekeli H.: Uncertainty modeling of critical column buckling for reinforced concrete buildings. Indian Acad. Sci. 36(2), 267–280 (2011)

    Google Scholar 

  19. Wang X., Wang L.: Uncertainty quantification and propagation analysis of structures based on measurement data. Math. Comput. Model. 54, 2725–2735 (2011)

    Article  MATH  Google Scholar 

  20. Erdolen A., Doran B.: Interval finite element analysis of infill walls by using interval values. Struct. Eng. Mech. 44(1), 73–84 (2012)

    Article  Google Scholar 

  21. Koksal H.O., Doran B.: Stress–strain model of rectangular/square concrete columns confined with FRP sheets. Proc. ICE-Struct. Build. 164(6), 391–408 (2012)

    Article  Google Scholar 

  22. ACI Committee 440: Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures (ACI 440.2R-02). American Concrete Institute, Farmington Hills, Mich., 45 (2002)

  23. Lam L., Teng J.G.: Strength models for fiber-reinforced-plastic-confined concrete. J. Struct. Eng. ASCE 128(5), 612–623 (2002)

    Article  Google Scholar 

  24. Youssef, M.N.: Stress–Strain Model for Concrete Confined by FRP Composites. Ph.D. Thesis. Civil Engineering Department, University of California (2003)

  25. Chaallal O., Hassan M., Shahawy M.: Confinement model for axially loaded short rectangular columns strengthened with fiber-reinforced polymer wrapping. ACI Struct. J. 100(2), 215–221 (2003)

    Google Scholar 

  26. Lam L., Teng J.G.: Design-oriented stress–strain model for FRP confined concrete in rectangular columns. J. Reinf. Plast. Compos. 22(13), 1149–1186 (2003)

    Article  Google Scholar 

  27. Harajli M.H., Hantouche E., Soudki K.: Stress–strain model for fiber-reinforced polymer jacketed concrete columns. ACI Struct. J. 103(5), 672–682 (2006)

    Google Scholar 

  28. Shehata I.A.E.M., Carneinro L.A.V., Shehata L.C.D.: Strength of short concrete columns confined with CFRP sheet. Mater. Struct. 35(1), 50–58 (2002)

    Article  Google Scholar 

  29. Turgay, T.: FRP uygulanmış eksenel yüklü betonarme kolonların davranışı (Behaviour of RC columns confined with FRP). PhD. Thesis submitted to Yıldız Teknik Universitesi (2007)

  30. İlki A., Peker O., Karamuk E., Demir C., Kumbasar N.: FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns. J. Mater. Civ. Eng. ASCE 20(2), 169–188 (2008)

    Article  Google Scholar 

  31. Demers, M.; Neale, K.W.: Strengthening of concrete columns with unidirectional composite sheets. In: Development in Short and Medium Span Bridge Engineering’94, Proceedings of the Fourth International Conference on Short and Medium Span Bridges, pp. 895–905. Canadian Society of Civil Engineering, Montreal (1994)

  32. Pessiki S., Harries K.A., Kestner J.T., Sause R., Ricles J.M.: Axial behavior of reinforced concrete columns confined with FRP jackets. J. Compos. Constr. ASCE 5(4), 237–245 (2001)

    Article  Google Scholar 

  33. Hosotani, M.; Kawashima, K.; Hoshikuma, J.: A study on confinement effect of concrete cylinders by carbon fiber sheets. In: Proceedings of the 3rd Non-metallic (FRP) Reinforcement for Concrete Structures, vol. 1, pp. 209–2013 (1997)

  34. Feng, P.; Lu, X.Z.; Ye, L.P.: Experimental research and finite element analysis of square concrete columns confined by FRP sheets under uniaxial compression. In: Proceedings of the 17th Australasian Conference on the Mechanics of Structures, pp. 71–76. Gold Coast, Australia (2002)

  35. Parvin A., Wang W.: Behavior of FRP jacketed concrete columns under eccentric loading. J. Compos. Constr. ASCE 5(3), 146–152 (2001)

    Article  Google Scholar 

  36. Al-Salloum Y.A.: Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates. Compos. Part B 38, 640–650 (2007)

    Article  Google Scholar 

  37. Rousakis T.C., Karabinis A.I., Kiousis P.D.: FRP-confined concrete members: axial compression experiments and plasticity modeling. Eng. Struct. 29, 1343–1353 (2007)

    Article  Google Scholar 

  38. Richart, F.E.; Brandtzaeg, A.; Brown, R.L.: A Study of the Failure of Concrete Under Combined Compressive Stress. University of Illinois, Engineering Experimental Station, Illinois, 1928, USA

  39. Alacalı S.N., Akbaş B., Doran B.: Prediction of lateral confinement coefficient in R/C columns using neural network simulation. Appl. Soft Comput. 11(2), 2645–2655 (2011)

    Article  Google Scholar 

  40. Saadatmanesh H., Ehsani M.R., Li M.W.: Strength and ductility of concrete columns externally reinforced with fiber composite straps. ACI Struct. J. 91(4), 434–447 (1994)

    Google Scholar 

  41. Karbhari V.M., Gao Y.: Composite jacketed concrete under unaxial compression verification of simple design equations. J. Mater. Civ. Eng. ASCE 9(4), 185–193 (1997)

    Article  Google Scholar 

  42. Spoelstra M.R., Monti G.: FRP-confined concrete model. J. Compos. Constr. ASCE. 3(3), 143–150 (1999)

    Article  Google Scholar 

  43. Restrepol, J.I.; De Vino, B.: Enhancement of the axial load-capacity of reinforced concrete columns by means of fiberglass-epoxy jackets. In: El-Badry, M.M. (ed.), Proceedings of the Second International Conference on Advanced Composite Materials in Bridges and Structures, pp. 547–690. Montreal, Canada (1996)

  44. Mander J.B., Priestley M.J.N., Park R.: Observed stress–strain behavior of confined concrete. J. Struct. Eng. ASCE 114(8), 1827–1849 (1998)

    Article  Google Scholar 

  45. William, K.J.; Warnke, E.P.: Constitutive model for the triaxial behavior of concrete. In: Proceedings of the International Association for Bridge and Structural Engineering, vol. 19, pp. 1–30 (1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Doran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doran, B., Erdolen, A., Akbas, B. et al. Uncertainty Definition on the Constitutive Models for RC Columns Wrapped with FRP. Arab J Sci Eng 39, 7535–7548 (2014). https://doi.org/10.1007/s13369-014-1316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1316-z

Keywords

Navigation