Skip to main content
Log in

Strengthening of Bisphenol-A Epoxy Resin by the Addition of Multi-Wall Carbon Nanotubes

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Multi-wall carbon nanotubes (MWCNTs) were prepared by chemical vapour deposition and purified by thermal oxidation. The purified MWCNTs were functionalized by nitric acid and hydrogen peroxide processes, and subsequently, the MWCNTs were added in bisphenol-A epoxy to prepare 0.1% CNT- nanocomposites. Transmission electron microscopy, fourier transform infrared spectroscopy, rheological and mechanical testing showed that the MWCNTs functionalized by hydrogen peroxide processes were comprehensively de-roped causing their better dispersion and curing of the epoxy, which consequently resulted in higher mechanical properties of the nanocomposite. During fractography of the fractured specimens, a transition of the fracture behaviour was observed; smooth brittle fracture with fissure-like features having parallel planes perpendicular to crack propagation (in neat epoxy specimens) is transformed into mixed type fracture comprising variable angle steps like and fish scale like features (in functionalized CNT and epoxy specimens), which is indicative of the improvement in the fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joel R.F.: Polymer Science and Technology. Pearson education ltd, Singapore (2006)

    Google Scholar 

  2. Unger E., Graham A., Kreupl F., Liebau M., Hoenlein W.: Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr. Appl. Phys. 2, 107–111 (2002)

    Article  Google Scholar 

  3. Sun X.K., Zhao W.M.: Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach. Mater. Sci. Eng. A 390, 366–371 (2005)

    Article  Google Scholar 

  4. Jin A.K., Dong G.S., Tae J.K., Jae R.Y.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)

    Article  Google Scholar 

  5. Chen Q., Dai L., Gao M., Huang S., Mau A.: Plasma activation of carbon nanotubes for chemical modification. J. Phys. Chem. B 105, 618–622 (2001)

    Article  Google Scholar 

  6. Smrutisikha B.: Influence of dispersion states of carbon nanotubes on mechanical and electrical properties of epoxy nanocomposites. J. Sci. Ind. Res. 66(9), 752–756 (2007)

    Google Scholar 

  7. Nadia G., Joachim L., Lucas L., Maryse M., Ce’cile Z., Cor E., John H.: High-conductivity polymer nano-composites obtained by tailoring the characteristics of carbon nanotube fillers. Adv. Funct. Mater. 18, 3226–3234 (2008)

    Article  Google Scholar 

  8. Sun Y.P., Fu K., Lin Y., Huqng W.: Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35, 1096–1104 (2002)

    Article  Google Scholar 

  9. Sheng-Hao H., Ming-Chung W., Sharon C., Chih-Min C., Shih-Hsiang L., Wei-Fang S.: Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon 50, 896–905 (2012)

    Article  Google Scholar 

  10. Sharon C., Sheng-Hao H., Ming-Chung W., Wei Fang S.: Kinetics studies on the accelerated curing of liquid crystalline epoxy resin/multiwalled carbon nanotube nanocomposites. J. Polym. Sci. B 49, 301–309 (2011)

    Google Scholar 

  11. Breton Y., De’sarmot G., Salvetat J.P., Delpeux S., Sinturel C., Be’guin F.: Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 42, 1027–1030 (2004)

    Article  Google Scholar 

  12. Fidelus J.D., Wiesel E., Gojny F.H., Schulte K., Wagner H.D.: Thermo-mechanical properties of randomly oriented carbon/epoxy composites. Compos. A 336, 1555–1561 (2005)

    Article  Google Scholar 

  13. Miyagawa H., Rich M.J., Drzal L.T.: Thermo-physical properties of epoxy composites reinforced by carbon nanotubes and vapor grown carbon fibers. Thermochim. Acta. 442, 67–73 (2006)

    Article  Google Scholar 

  14. Song Y.S., Youn J.R.: Influence of dispersion states of carbon nanotubes on physical properties of epoxy composites. Carbon 43, 1378–1385 (2005)

    Article  Google Scholar 

  15. Naseh M.V., Khodadadi A.A., Mortazavi Y., Alizadeh O.S., Pourfayaz F., Sedghi S.M.: Functionalization of carbon nanotubes using nitric acid oxidation and BDB plasma. Proc. World Acad. Sci. Eng. Technol. 37, 177–179 (2009)

    Google Scholar 

  16. Yao W., Jun W., Fei W.: A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 41, 2939–2948 (2003)

    Article  Google Scholar 

  17. Kim D.Y., Yang C.M., Park Y.S., Kim K.K., Jeong S.Y., Han J.H.: Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition. Chem. Phys. Lett. 413, 135–141 (2005)

    Article  Google Scholar 

  18. John H.L., Mauricio T., Elisabeth M., Katherine E.H., Vincent M.: Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581–2602 (2011)

    Article  Google Scholar 

  19. Robert, M.S.; Clayton, G.B.; Terence, C.M.: Spectrometric Identification of Organic Compounds, pp. 104–122. Wiley, New York (1981)

  20. Zhao C., Ji L., Liu H., Hu G., Zhang S., Yang M., Yang Z.: Functionalized carbon nanotubes containing isocyanate groups. J. Solid State Chem. 177, 4394–4398 (2004)

    Article  Google Scholar 

  21. Chingombe P., Saha B., Wakeman R.J.: Surface modification and characterization of a coal-based activated carbon. Carbon 43, 3132–3143 (2005)

    Article  Google Scholar 

  22. Lau K.T., Lu M., Lam C.K., Cheung H.Y., Sheng F.L., Li H.L.: Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos. Sci. Technol. 65(5), 719–725 (2005)

    Article  Google Scholar 

  23. Evtushenko Y., Ivanov V.M., Zaitsev B.E.: Determination of epoxide and hydroxyl groups in epoxide resins by IR spectrometry. J. Anal. Chem. 58(4), 347–350 (2003)

    Article  Google Scholar 

  24. Hong S.G., Wu C.S.: DSC and FTIR analysis of the curing behaviours of epoxy/DICY/solvent open systems. Thermochim. Acta 316(2), 167–175 (1998)

    Article  MathSciNet  Google Scholar 

  25. Loos M.R., Coelho L.A.F., Pezzin S.H., Amico S.C.: The effect of acetone addition on the properties of epoxy. Polím. Ciênc. Tecnol. 18(1), 76–80 (2008)

    Google Scholar 

  26. Cotiuga I., Picchioni F., Agarwal U.S., Wouter D., Loos J., Lemstra P.J.: Block-coploymer-assisted solubilization of carbon nanotubes and exfoliation monitoring through viscosity. Macromol. Rapid Commun. 27(13), 1073–1078 (2006)

    Article  Google Scholar 

  27. Licea-Jimenez L., Henrio P.Y., Lund A., Laurie T.M., Perez-Garcia A.S., Nyborg L.: MWNT reinforced melamine-formaldehyde containing alpha-cellulose. Compos. Sci. Technol. 67(5), 844–854 (2007)

    Article  Google Scholar 

  28. Allaoui A., Bai S., Cheng H.M., Bai J.B.: Mechanical and electrical properties of aMWNT/epoxy composite. Compos. Sci. Technol. 62(15), 1993–1998 (2002)

    Article  Google Scholar 

  29. Zhou Y.X., Wu P.X., Cheng Z., Jeelani S.: Improvement in mechanical properties of epoxy by filling carbon nanotubes. Express Polym. Lett. 2(1), 40–48 (2008)

    Article  Google Scholar 

  30. ASM Metals Handbook, vol. 11—Failure analysis and prevention, ASM International Materials Park, Russell Township, Geauga County, pp. 2250–2260 (2002)

  31. ASM Metals Handbook, vol. 11—Failure analysis and prevention, ASM International Materials Park, Russell Township, Geauga County, pp. 1387–1389 (2002)

  32. Klaus F., Stoyko F., Zhong Z.: Polymer composites from nano- to macro-scale. Polym. Compos. 5, 51–54 (2005)

    Google Scholar 

  33. Becker O., Simon G.P.: Epoxy layered silicate nanocomposites in: inorganic polymeric nanocomposites and membrane. Adv. Polym. Sci. 179, 135–142 (2005)

    Article  Google Scholar 

  34. Kornmann X., Berglund L.A.: Nanocomposites based on montmorillonite and unsaturated polyester. J. Polym. Eng. Sci. 38, 1351–1358 (1998)

    Article  Google Scholar 

  35. Becker, O.: High performance epoxy-layered silicate nanocomposites. PhD in School of Physics and Materials Engineering. Monash University, Melbourne (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, M., Shahid, M. & Habib, A. Strengthening of Bisphenol-A Epoxy Resin by the Addition of Multi-Wall Carbon Nanotubes. Arab J Sci Eng 39, 6411–6420 (2014). https://doi.org/10.1007/s13369-014-1290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1290-5

Keywords

Navigation