Skip to main content
Log in

Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Polyvinylalcohol/titanium dioxide (PVA/TiO2) nanocomposite membranes were prepared by dispersing hydrophilic fumed TiO2 nanoparticles into the polymer matrix. The influence of TiO2 nanoparticles on the morphological, thermal and solution properties of PVA/TiO2 nanocomposite membranes was investigated using FESEM, XRD, DSC, TGA, rheometer, zeta sizer and contact angle meter. FESEM analysis shows that TiO2 nanoparticles up to 30wt% are dispersed homogeneously in the membranes without aggregation and covered by PVA polymeric chains. Above 30wt% TiO2 content, the level of aggregation increases, and at 50wt%, it was significant. The incorporation of TiO2 nanoparticles into the PVA matrix lowers the primary crystallinity of PVA and by inducing new crystalline regions due to TiO2; the overall crystallinity of the nanocomposite membranes is modified. Thermal stability of the composite membrane is improved by the addition of TiO2 nanoparticles. The increase of TiO2 concentration in PVA/TiO2 suspension has shown a transition in the regime of suspension from Newtonian to shear thinning starting at 10wt% TiO2. At low concentration of nanoparticles, the shear thinning behavior at lower shear rate is less. The shear thinning behavior increases as the concentration of TiO2 is increased. The conductivity of PVA/TiO2 dispersions is lower than PVA which indicates the formation of clusters, leading to decrease in number of charge carriers and their mobility. The zeta potential increases with increasing TiO2 content, which shows that PVA/TiO2 suspension is stable at higher content of TiO2. The hydrophilicity of PVA/TiO2 nanocomposite membranes increases as the loading of TiO2 is increased in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vu D.Q., Koros W.J., Miller S.J.: Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membr. Sci. 211(2), 311–334 (2003)

    Article  Google Scholar 

  2. Stern S.A.: Polymers for gas separations: the next decade. J. Membr. Sci. 94(1), 1–65 (1994)

    Article  Google Scholar 

  3. Noble R.D., Agrawal R.: Separations research needs for the 21st century. Ind. Eng. Chem. Res. 44(9), 2887–2892 (2005). doi:10.1021/ie0501475

    Article  Google Scholar 

  4. Baker R.W.: Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 44(9), 2887–2892 (2002). doi:10.1021/ie0108088

    Google Scholar 

  5. Lee, E.k.; Koros, W.J.: Membranes, synthetic, applications. In: Mayers, R.A. (ed) Encylopedia of Physical Science and Technology, pp. 279–345. Academic Press, New York (2012)

  6. Ghosal K., Freeman B.D.: Gas separation using polymer membranes: an overview. Polym. Adv. Technol. 5(11), 673–697 (1994). doi:10.1002/pat.1994.220051102

    Article  Google Scholar 

  7. Koros W.J., Fleming G.K., Jordan S.M., Kim T.H., Hoehn H.H.: Polymeric membrane materials for solution-diffusion based permeation separations. Prog. Polym. Sci. 13(4), 339–401 (1988). doi:10.1016/0079-6700(88)90002-0

    Article  Google Scholar 

  8. Gholizadeh M.: Effect of polymer (PE-EVA-PVC) structure on gas permision properties. Arab. J. Sci. Eng. 37, 889–896 (2012)

    Article  Google Scholar 

  9. Koros W.J., Fleming G.K.: Membrane-based gas separation. J. Membr. Sci. 83(1), 1–80 (1993). doi:10.1016/0376-7388(93)80013-n

    Article  Google Scholar 

  10. Robeson L.M.: Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62(2), 165–185 (1991). doi:10.1016/0376-7388(91)80060-j

    Article  Google Scholar 

  11. Robeson L.M.: The upper bound revisited. J. Membr. Sci. 320(1–2), 390–400 (2008). doi:10.1016/j.memsci.2008.04.030

    Article  Google Scholar 

  12. Lu H., Zhang L., Xing W., Wang H., Xu N.: Preparation of TiO 2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. Mater. Chem. Phys. 94(2–3), 322–327 (2005). doi:10.1016/j.matchemphys.2005.05.008

    Article  Google Scholar 

  13. Bottino A., Capannelli G., D’Asti V., Piaggio P.: Preparation and properties of novel organic–inorganic porous membranes. Sep. Purif. Technol. 22(23(0), 269–275 (2001). doi:10.1016/s1383-5866(00)00127-1

    Article  Google Scholar 

  14. Yang Y., Zhang H., Wang P., Zheng Q., Li J.: The influence of nano-sized TiO 2 fillers on the morphologies and properties of PSF UF membrane. J. Membr. Sci. 288(1–2), 231–238 (2007). doi:10.1016/j.memsci.2006.11.019

    Article  Google Scholar 

  15. Yang Y., Wang P., Zheng Q.: Preparation and properties of polysulfone/TiO 2 composite ultrafiltration membranes. J. Polym. Sci. Part B: Polym. Phys. 44(5), 879–887 (2006). doi:10.1002/polb.20715

    Article  Google Scholar 

  16. Yan L., Li Y.S., Xiang C.B.: Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al 2 O 3) and its antifouling research. Polymer 46(18), 7701–7706 (2005). doi:10.1016/j.polymer.2005.05.155

    Article  Google Scholar 

  17. Cao X., Ma J., Shi X., Ren Z.: Effect of TiO 2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 253(4), 2003–2010 (2006). doi:10.1016/j.apsusc.2006.03.090

    Article  Google Scholar 

  18. Yan L., Li Y.S., Xiang C.B., Xianda S.: Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J. Membr. Sci. 276(1–2), 162–167 (2006). doi:10.1016/j.memsci.2005.09.044

    Article  Google Scholar 

  19. Jian P., Yahui H., Yang W., Linlin L.: Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J. Membr. Sci. 284(1–2), 9–16 (2006). doi:10.1016/j.memsci.2006.07.052

    Article  Google Scholar 

  20. Yang Y., Wang P.: Preparation and characterizations of a new PS/TiO 2 hybrid membranes by sol–gel process. Polymer 47(8), 2683–2688 (2006). doi:10.1016/j.polymer.2006.01.019

    Article  Google Scholar 

  21. Luo M.-L., Zhao J.-Q., Tang W., Pu C.-S.: Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO 2 nanoparticles. Appl. Surf. Sci. 249(1–4), 76–84 (2005). doi:10.1016/j.apsusc.2004.11.054

    Article  Google Scholar 

  22. Kong Y., Du H., Yang J., Shi D., Wang Y., Zhang Y., Xin W.: Study on polyimide/TiO 2 nanocomposite membranes for gas separation. Desalination 146(1–3), 49–55 (2002). doi:10.1016/s0011-9164(02)00476-9

    Article  Google Scholar 

  23. Merkel T.C., Freeman B.D., Spontak R.J., He Z., Pinnau I., Meakin P., Hill A.J.: Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes. Chem. Mater. 15(1), 109–123 (2002). doi:10.1021/cm020672j

    Article  Google Scholar 

  24. Sairam M., Patil M.B., Veerapur R.S., Patil S.A., Aminabhavi T.M.: Novel dense poly(vinyl alcohol)–TiO 2 mixed matrix membranes for pervaporation separation of water–isopropanol mixtures at 30°C. J. Membr. Sci. 281(1–2), 95–102 (2006). doi:10.1016/j.memsci.2006.03.022

    Article  Google Scholar 

  25. Mahajan R., Burns R., Schaeffer M., Koros W.J.: Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci. 86(4), 881–890 (2002). doi:10.1002/app.10998

    Article  Google Scholar 

  26. Mahajan R., Koros W.J.: Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res. 39(8), 2692–2696 (2000). doi:10.1021/ie990799r

    Article  Google Scholar 

  27. Mahajan R., Koros W.J.: Mixed matrix membrane materials with glassy polymers. Part 1. Polym. Eng. Sci. 42(7), 1420–1431 (2002). doi:10.1002/pen.11041

    Article  Google Scholar 

  28. Mahajan R., Koros W.J.: Mixed matrix membrane materials with glassy polymers. Part 2. Polym. Eng. Sci. 42(7), 1432–1441 (2002). doi:10.1002/pen.11042

    Article  Google Scholar 

  29. Bae T.-H., Tak T.-M.: Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 249(1–2), 1–8 (2005). doi:10.1016/j.memsci.2004.09.008

    Google Scholar 

  30. Chun-Chen Y.: Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J. Membr. Sci. 288(1–2), 51–60 (2007). doi:10.1016/j.memsci.2006.10.048

    Google Scholar 

  31. Ulrike D.: The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003). doi:10.1016/s0167-5729(02)00100-0

    Google Scholar 

  32. Chen X., Mao S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007). doi:10.1021/cr0500535

    Article  Google Scholar 

  33. Linsebigler A.L., Lu G., Yates J.T.: Photocatalysis on TiO 2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). doi:10.1021/cr00035a013

    Article  Google Scholar 

  34. Clarizia G., Algieri C., Drioli E.: Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane. Polymer 45(16), 5671–5681 (2004). doi:10.1016/j.polymer.2004.06.001

    Article  Google Scholar 

  35. Guizard C., Bac A., Barboiu M., Hovnanian N.: Hybrid organic–inorganic membranes with specific transport properties: applications in separation and sensors technologies. Separation and Purification Technology 25(1–3), 167–180 (2001). doi:10.1016/s1383-5866(01)00101-0

    Article  Google Scholar 

  36. Lu Z., Liu G., Duncan S.: Poly(2-hydroxyethyl acrylate-co-methyl acrylate)/SiO2/TiO 2 hybrid membranes. J. Membr. Sci. 221(1–2), 113–122 (2003). doi:10.1016/s0376-7388(03)00251-5

    Article  Google Scholar 

  37. Taniguchi A., Cakmak M.: The suppression of strain induced crystallization in PET through sub micron TiO 2 particle incorporation. Polymer 45(19), 6647–6654 (2004). doi:10.1016/j.polymer.2004.06.056

    Article  Google Scholar 

  38. Utracki L.A., Kamal M.R.: Clay-containing polymeric nanocomposites. Arab. J. Sci. Eng. 27, 43–67 (2002)

    Google Scholar 

  39. Xu Z., Yu L., Han L.: Polymer–nanoinorganic particles composite membranes: a brief overview. Front. Chem. Eng. China 3(3), 318–329 (2009). doi:10.1007/s11705-009-0199-0

    Article  Google Scholar 

  40. Stephen R., Ranganathaiah C., Varghese S., Joseph K., Thomas S.: Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47(3), 858–870 (2006). doi:10.1016/j.polymer.2005.12.020

    Article  Google Scholar 

  41. Mascia L., Zhang Z., Shaw S.J.: Carbon fibre composites based on polyimide/silica ceramers: aspects of structure–properties relationship. Compos. Part A: Appl. Sci. Manuf. 27(12), 1211–1221 (1996). doi:10.1016/1359-835X(96)00082-6

    Article  Google Scholar 

  42. Shi D., Kong Y., Yang J., Du H.: Study on translational metal organic complex-Polyimide hybrid materials for gas separation membranes. Acta Polym. Sin. 4, 457–461 (2000)

    Google Scholar 

  43. Hu Q., Marand E., Dhingra S., Fritsch D., Wen J., Wilkes G.: Poly(amide-imide)/TiO 2 nano-composite gas separation membranes: fabrication and characterization. J. Membr. Sci. 135(1), 65–79 (1997). doi:10.1016/s0376-7388(97)00120-8

    Article  Google Scholar 

  44. Kim J.H., Lee Y.M.: Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. J. Membr. Sci. 193(2), 209–225 (2001). doi:10.1016/s0376-7388(01)00514-2

    Article  Google Scholar 

  45. Zhang Y., Huang X., Duan B., Wu L., Li S., Yuan X.: Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym. Sci. 285(8), 855–863 (2007). doi:10.1007/s00396-006-1630-4

    Article  Google Scholar 

  46. Shokralla, S.A.; Al-Muaikel, N.S.: Thermal properties of epoxy(DGEBA)/phenolic resin(NOVALAC) blend. Arab. J. Sci. Eng. 37, 7–14 (2010)

    Google Scholar 

  47. Aoi K., Takasu A., Okada M.: DNA-based polymer hybrids Part 1. Compatibility and physical properties of poly(vinyl alcohol)/DNA sodium salt blend. Polymer 41(8), 2847–2853 (2000). doi:10.1016/s0032-3861(99)00476-0

    Article  Google Scholar 

  48. Liu X., Wu Q., Berglund L.A., Qi Z.: Investigation on unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites. Macromol. Mater. Eng. 287(8), 515–522 (2002). doi:10.1002/1439-2054(20020801)287:8$<$515::aid-mame515$>$3.0.co;2-b

  49. Wunderlich B.: Thermal Analysis. Academic Press, New York (1990)

    Google Scholar 

  50. Abdul-Lateef A.A., Al-Harathi M., Atieh M.A.: Effect of multi-walled carbon nanotubes on the mechanical and thermal properties of natural rubber. Arab. J. Sci. Eng. 35, 49–56 (2010)

    Google Scholar 

  51. Olphen H.V.: An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists. Wiley, New York (1977)

    Google Scholar 

  52. Zhu L.-P., Zhu B.-K., Xu L., Feng Y.-X., Liu F., Xu Y.-Y.: Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes. Appl. Surf. Sci. 253(14), 6052–6059 (2007). doi:10.1016/j.apsusc.2007.01.004

    Article  Google Scholar 

  53. Hu M.-X., Yang Q., Xu Z.-K.: Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators. J. Membr. Sci. 285(1–2), 196–205 (2006). doi:10.1016/j.memsci.2006.08.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Deshmukh, K., Habib, M. et al. Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes. Arab J Sci Eng 39, 6805–6814 (2014). https://doi.org/10.1007/s13369-014-1287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1287-0

Keywords

Navigation