Skip to main content

Advertisement

Log in

Implementation of High-Voltage Multilevel Harmonic Filter Based on Rotated Carrier Modulation and Artificial Intelligence-Based Controllers

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the multilevel inverter (MLI) harmonic filter with modified modulation and advanced intelligent control scheme is described and implemented. The proposed scheme has three artificial intelligence-based controllers that are used for harmonic excerption, ripple reduction in dc capacitor voltage, and modulation, respectively. The artificial neural network (ANN) is applied for separating harmonic constituents from load, and fuzzy logic concept is utilized for dc capacitor voltage ripple minimization and current error adaptation for modulation. Further, the level-shifted multicarrier modulation is modified for balanced switching by rotating carriers for generating gate pulses for devices of inverter. The cascaded H-bridge topology of MLI is selected as filter due to its modular and compact structure. The instantaneous power theory is altered by using neural network for obtaining corrupted portion from load current and calculating reference values for compensation. The simulation model is developed by using MATLAB/SIMULINK, and hardware module is executed using dSPACE DS1103. The simulation performance is analyzed for various load conditions including transient states. The proposed topology performance is justified for its efficiency and viability through exhaustive simulation and experimentation. The total harmonic distortion in source current (THD i ), power factor, and voltage ripples is being used as evaluation criteria to quantify the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dehini R., Benachaiba C., Bassou A.: Simulation of distribution static compensator (D-STATCOM) to improve power quality. Arab. J. Sci. Eng. 38, 3051–3058 (2013)

    Article  Google Scholar 

  2. Omar R., Rahim N.A.: New configuration of a three phase dynamic voltage restorer (DVR) for voltage disturbances mitigation in electrical distribution system. Arab. J. Sci. Eng. 37(8), 2205–2220 (2012)

    Article  Google Scholar 

  3. Safari A., Shayanfar H.A., Kazemi A., Shayeghi H.: Dynamic modeling of PWM-based AC link series compensator. Arab. J. Sci. Eng. 39, 1971–1981 (2014)

    Article  Google Scholar 

  4. Sedghi, S.; Dastfan, A.; Ahmadyfard, A.: A new multilevel carrier based pulse width modulation method for modular multilevel inverter. In: IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), pp. 1432–1439 (2011)

  5. Hochgraf, C.; Lasseter, R.; Divan, D.; Lipo, T.A.: Comparison of multilevel inverters for static var compensation. In: Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting pp. 921–928 (1994)

  6. Alabbasi, R.H.; Salih, S.M.: Control of cascade multilevel inverter using fuzzy logic technique. In: 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 96–101 (2010)

  7. Corasaniti, V.F.; Barbieri, M.B.; Arnera, P.L.; Valla, M.I.: Comparison of active filters topologies in medium voltage distribution power systems. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–8 (2008)

  8. Massoud A.M., Finney S.J., Cruden A.J., William B.W.: Three-phase, three-wire, five-level cascaded shunt active filter for power conditioning, using two different space vector modulation techniques. IEEE Trans. Power Deliv. 22(4), 2349–2361 (2007)

    Article  Google Scholar 

  9. Munduate A., Figueres E., Garcera G.: Robust model-following control of a three-level neutral point clamped shunt active filter in the medium voltage range. Int. J. Electr. Power Energy Syst. 31(10), 577–588 (2009)

    Article  Google Scholar 

  10. Terciyanli A., Avci T., Yilmaz I., Ermis C., Kose K.N., Acik A., Kalaycioglu A.S., Akkaya Y., Cadirci I., Ermis M.: A current source converter-based active power filter for mitigation of harmonics at the interface of distribution and transmission systems. IEEE Trans. Ind. Appl. 48(4), 1374–1386 (2012)

    Article  Google Scholar 

  11. Allmeling J.: A control structure for fast harmonics compensation in active filters. IEEE Trans. Power Electron. 19(2), 508–514 (2004)

    Article  Google Scholar 

  12. Vodyakho O., Mi C.C.: Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire systems. IEEE Trans. Power Electron. 24(5), 1350–1363 (2009)

    Article  Google Scholar 

  13. Zhou G., Wu B., Xu D.: Direct power control of a multilevel inverter based active power filter. Electr. Power Syst. Res. 77(3), 284–294 (2007)

    Article  Google Scholar 

  14. Junling, C.; Xinjian, J.; Dongqi, Z.; Likuan, D.; Beige, Y.: High power hybrid active power filter for medium-voltage distribution network. In: Proceedings of the 8th International Conference on Electrical Machines and Systems (ICEMS), pp. 1381–1386 (2005)

  15. Jin, T.; Wen, J.; Smedley, K.: Control and topologies for three-phase three-level active power filters. In: 20th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 655–664 (2005)

  16. Odavic M., Biagini V., Sumner M., Zanchetta P., Degano M.: Low carrier fundamental frequency ratio PWM for multilevel active shunt power filters for aerospace applications. IEEE Trans. Ind. Appl. 49(1), 159–167 (2013)

    Article  Google Scholar 

  17. Xiao P., Venayagamoorthy G.K., Corzine K.A.: Seven-level shunt active power filter for high-power drive systems. IEEE Trans. Power Electron. 24(1), 6–13 (2009)

    Article  Google Scholar 

  18. Wu B.: High-Power Converters and AC Drives. Wiley-IEEE Press, London (2006)

    Book  Google Scholar 

  19. Attia A.-F., Al-Turki Y.A., Soliman H.: Genetic algorithm-based fuzzy controller for improving the dynamic performance of self-excited induction generator. Arab. J. Sci. Eng. 37(3), 665–682 (2012)

    Article  Google Scholar 

  20. Kadri M.: Disturbance rejection in nonlinear uncertain systems using feedforward control. Arab. J. Sci. Eng. 38(9), 2439–2450 (2013)

    Article  Google Scholar 

  21. Omar H., Abido M.A.: Enhancement of integrated fuzzy-based guidance law by tabu search. Arab. J. Sci. Eng. 37(7), 2035–2046 (2012)

    Article  Google Scholar 

  22. Silas Stephen D., Somasundaram P.: Solution for multi-objective reactive power optimization using fuzzy guided tabu search. Arab. J. Sci. Eng. 37(8), 2231–2241 (2012)

    Article  Google Scholar 

  23. Ozpineci B., Tolbert L.M., Chiasson J.N.: Harmonic optimization of multilevel converters using genetic algorithms. IEEE Power Electron. Lett. 3(3), 92–95 (2005)

    Article  Google Scholar 

  24. Altin N., Altin N.: dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter. Energy Convers. Manag. 56, 130–139 (2012)

    Article  Google Scholar 

  25. Jurado F., Valverde M.: Genetic fuzzy control applied to the inverter of solid oxide fuel cell for power quality improvement. Electr. Power Syst. Res. 76, 93–105 (2005)

    Article  Google Scholar 

  26. Ravi A., Manoharan P.S., Vijay Anand J.: Modeling and simulation of three phase multilevel inverter for grid connected photovoltaic systems. Sol. Energy 85(11), 2811–2818 (2011)

    Article  Google Scholar 

  27. Tsengenes G., Nathenas T., Adamidis G.: A three-level space vector modulated grid connected inverter with control scheme based on instantaneous power theory. Simul. Model. Pract. Theory 25, 134–147 (2012)

    Article  Google Scholar 

  28. Saad S., Zellouma L.: Fuzzy logic controller for three-level shunt active filter compensating harmonics and reactive power. Electric Power Syst. Res. 79(10), 1337–1341 (2009)

    Article  Google Scholar 

  29. Bhattacharya A., Chakraborty C.: A shunt active power filter with enhanced performance using ANN-based predictive and adaptive controllers. IEEE Trans. Ind. Electron. 58(2), 421–428 (2011)

    Article  Google Scholar 

  30. Kinhal V.G., Agarwal P., Gupta H.O.: Performance investigation of neural-network-based unified power-quality conditioner. IEEE Trans. Power Deliv. 26(1), 431–437 (2011)

    Article  Google Scholar 

  31. Hamad M.S., Gadoue S.M., Williams B.W.: Harmonic compensation of a six-pulse current source controlled converter using neural network-based shunt active power filter. IET Power Electron. 5(6), 747–754 (2012)

    Article  Google Scholar 

  32. Nascimento C.F., Goedtel A., Dietrich A.B.: Harmonic distortion monitoring for nonlinear loads using neural-network-method. Appl. Soft Comput. 13, 475–482 (2013)

    Article  Google Scholar 

  33. Xu L., Han Y., Khan M.M., Pan J.-M., Chen C., Yao G., Zhou L.-D.: Analysis and effective controller design for the cascaded H-bridge multilevel APF with adaptive signal processing algorithms. Int. J. Circuit Theory Appl. 40(7), 635–659 (2012)

    Article  MATH  Google Scholar 

  34. Valdez-Fernandez A.A., Martinez-Rodriguez P.R., Escobar G., Limones-Pozos C.A., Sosa J.M.: A model-based controller for the cascade H-bridge multilevel converter used as a shunt active filter. IEEE Trans. Ind. Electron. 60(11), 5019–5028 (2013)

    Article  Google Scholar 

  35. Sreenivasarao, D.; Agarwal, P.; Das, B.: A carrier-transposed modulation technique for multilevel inverters. In: Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES) and Power India, pp. 1–7 (2010)

  36. McGrath B.P., Meynard T., Gateau G., Holmes D.G.: Optimal modulation of flying capacitor and stacked multicell converters using a state machine decoder. IEEE Trans. Power Electron. 22(2), 508–516 (2007)

    Article  Google Scholar 

  37. Aziz J.A., Salam Z.: A new pulse-width modulation (PWM) scheme for modular structured multilevel voltage source inverter. Int. J. Electron. 91(4), 211–226 (2004)

    Article  Google Scholar 

  38. Loh P.C., Holmes D.G., Fukuta Y., Lipo T.A.: Reduced common-mode modulation strategies for cascaded multilevel inverters. IEEE Trans. Ind. Appl. 39(5), 1386–1395 (2003)

    Article  Google Scholar 

  39. Carrara G., Gardella S., Marchesoni M., Salutari R., Sciutto G.: A new multilevel PWM method: a theoretical analysis. IEEE Trans. Power Electron. 7(3), 497–505 (1992)

    Article  Google Scholar 

  40. Tolbert L.M., Peng F.Z., Habetler T.G.: Multilevel PWM methods at low modulation indices. IEEE Trans. Power Electron. 15(4), 719–725 (2000)

    Article  Google Scholar 

  41. Angulo, M.; Lezana, P.; Kouro, S.; Rodriguez, J.; Wu, B.: Level-shifted PWM for cascaded multilevel inverters with even power distribution. In: 38th Annual IEEE Power Electronics Specialists Conference (PESC), pp. 2373–2378 (2007)

  42. Calais, M.; Borle, L.J.; Agelidis, V.G.: Analysis of multicarrier PWM methods for a single-phase five level inverter. In: 32nd Annual IEEE Power Electronics Specialists Conference (PESC), pp. 1351–1356 (2001)

  43. Kang, D.W.; Lee, W.K.; Hyun, D.S.: Carrier-rotation strategy for voltage balancing in flying capacitor multilevel inverter. In: IEE Proceedings of Electric Power Applications, pp. 239–248 (2004)

  44. Kang, D.-W.; Lee, Y.-H.; Suh, B.-S.; Choi, C.-H.; Hyun, D.-S.: An improved carrierwave-based SVPWM method using phase voltage redundancies for generalized cascaded multilevel inverter topology. In: Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2000. APEC 2000, pp. 542–548 (2000)

  45. Akagi H., Kanazawa Y., Nabae A.: Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans. Ind. Appl. IA-20(3), 625–630 (1984)

    Article  Google Scholar 

  46. Akagi H., Watanabe E.H., Aredes M.: Instantaneous Power Theory and Applications to Power Conditioning. Wiley IEEE Press, London (2007)

    Book  Google Scholar 

  47. Kazmierkowski, M.P.: Neural networks and fuzzy logic control in power electronics. In: Selected Problems Control in Power Electronics p. 351 (2002)

  48. Zadeh L.A., Klir G.J., Yuan B.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, vol. 6. World Scientific Publishing Company Incorporated, Singapore (1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasundhara Mahajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, V., Agarwal, P. & Gupta, H.O. Implementation of High-Voltage Multilevel Harmonic Filter Based on Rotated Carrier Modulation and Artificial Intelligence-Based Controllers. Arab J Sci Eng 39, 7127–7143 (2014). https://doi.org/10.1007/s13369-014-1280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1280-7

Keywords

Navigation