Skip to main content
Log in

Neural Network Technique for Modeling of Cu (II) Removal from Aqueous Solution by Clinoptilolite

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Clinoptilolite was investigated as an ion-exchange material for the removal of Cu (II) from aqueous solution. The effect of operational parameters such as pH, temperature, and initial concentration was studied to optimize the conditions for maximum removal of Cu (II) ions. Optimal operating conditions were determined to be a pH of 4, temperature of 30 °C, and initial concentration of 0.361 mg/l to achieve equilibrium. After backpropagation (BP) training, the neural network (NN) techniques were able to predict the maximum removal efficiency with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at output layer. The Levenberg Marquardts backpropagation training algorithm was found as the best of 10 BP algorithms with mean-squared error of 0.000365. The results showed that NN techniques are able to predict the removal of Cu (II) from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ijagbemi C.O., Boek M.H., Kim D.S.: Adsorption performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni 2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies. J. Hazard. Mater. 174, 746–755 (2010)

    Article  Google Scholar 

  2. Esalah O.J., Weber M.E., Vera J.H.: Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Can. J. Chem. Eng. 78, 948–954 (2000)

    Article  Google Scholar 

  3. Eccles H.: Removal of heavy metals from effluent streams-why select a biological process?. Int. Biodeterior. Biodegrad. 35, 5–16 (1995)

    Article  Google Scholar 

  4. Zouboulis A.I., Matis K.A., Lanara B.G., Neskovic C.L.: Removal of cadmium from dilute solutions by hydroxyl apatite II. Floatation studies. Sep. Sci. Technol. 32, 1755–1767 (1997)

    Article  Google Scholar 

  5. Hui K.S., Chao C.Y.H., Kot S.C.: Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater. B 127, 89–101 (2005)

    Article  Google Scholar 

  6. Zaki N.G., Khattab I.A., El-Monem N.M.A.: Removal of some heavy metals by CKD leachate. J. Hazard. Mater. 147, 21–27 (2007)

    Article  Google Scholar 

  7. Yu B., Zhang Y., Shukla A., Shukla S.S., Dorris K.L.: The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper. J. Hazard. Mater. B 80, 33–42 (2000)

    Article  Google Scholar 

  8. Canet L., IIpide M., Seta P.: Efficient facilitated transport of lead, cadmium, zinc and silver across a flat sheet-supported liquid membrane mediated by a lasalocid A. Sep. Sci. Technol. 37, 1851–1860 (2002)

    Article  Google Scholar 

  9. Guo X., Zhang S., Shan X.Q.: Adsorption of metal ions on lignin. J. Hazard. Mater. 151, 134–142 (2008)

    Article  Google Scholar 

  10. Kojima H., Lee K.Y.: Photosynthetic Microorganisms in Environmental Biotechnology. Springer, Hong Kong (2001)

    Google Scholar 

  11. Qdaisa H.A., Moussab H.: Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164, 105–110 (2004)

    Article  Google Scholar 

  12. El-Bayaa A.A., Badawy N.A., Alkhalik E.A.: Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. J. Hazard. Mater. 170, 1204–1209 (2009)

    Article  Google Scholar 

  13. Inglezakis V.J., Grigoropoulou H.: Effect of pore clogging on kinetics of lead uptake by clinoptilolite. J. Hazard. Mater. B 112, 37–43 (2004)

    Article  Google Scholar 

  14. Amankwah, A.; Kabuba, J.; Mulaba-Bafubiandi, A.F.: Modeling of Ion exchange process using time delayed neural networks. Proc. Int. Conf. Mech. Electr. Technol. 1, 447–451 (2011)

  15. Van den Bosch, M.M.: A dissertation submitted to the Faculty of Engineering at Cape Peninsula University of Technology (2009)

  16. Turan, N.G.; Ozgonenel, O.: The Design and Implementation of Adsorptive Removal of Cu (II) from leachate Using ANFIS. Sci. World J. (2013). doi:10.1155/2013/590267

  17. Mairquez G.E., Ribeiro M.J.P., Ventura J.M., Labrincha J.A.: Removal of nickel from aqueous solutions by clay-based beds. Ceram. Int. 30, 111–119 (2004)

    Article  Google Scholar 

  18. Khazali O., Abu-El-Halawa R., Al-Sou’od K.: Removal of copper (II) from aqueous solution by Jordanian pottery materials. J. Hazard. Mater. B 139, 67–71 (2007)

    Article  Google Scholar 

  19. Castro G.A., Echegarrua M.G., PerezM.A. Moreno-Tost R., Rodriguez-Castellon E., Jimenez-Lopez A.: Adsorption properties of natural and Cu (II), Zn (II), Ag (I) exchanged Cuban modernites. Micropor. Mesopor. Mater. 108, 325–332 (2008)

    Article  Google Scholar 

  20. Axtell N.R., Sternberg S.P.K., Claussen K.: Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol. 89, 41–48 (2003)

    Article  Google Scholar 

  21. Yan G., Viraraghavan T.: Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 37, 4486–4496 (2003)

    Article  Google Scholar 

  22. Li Q., Wu S., Liu G., Liao X., Deng X., Sun D., Hu Y., Huang Y.: Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysorium. Sep. Purif. Technol. 34, 135–142 (2004)

    Article  Google Scholar 

  23. Keskinkan O., Goksu M.Z.L., Basibuyuk M., Forster C.F.: Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour. Technol. 92, 197–200 (2004)

    Article  Google Scholar 

  24. Sud D., Mahajan G., Kaur M.P.: Agriculture waste material as potential adsorbent for sequestering heavy mrtal ions from aqueous solutions—a review. Bioresour. Technol. 99, 6017–6027 (2008)

    Article  Google Scholar 

  25. Sciban M., Klasnja M., Skrbic B.: Adsorption of copper ions from water by modified agricultural by-products. Desalination 229, 170–180 (2008)

    Article  Google Scholar 

  26. Huang Y.H., Hsueh C.L., Cheng H.P., Chen L.C.: Thermodynamics and kinetics of adsorption of Cu (II) onto waste iron oxide. J. Hazard. Mater. 144, 406–411 (2007)

    Article  Google Scholar 

  27. Alinnor I.J.: Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 86, 538–547 (2007)

    Article  Google Scholar 

  28. Turan N.G., Mesci B., Ozgonenei O.: The use of artificial neural network (ANN) for modeling of adsorption of Cu (II) from industrial leaching by pumice. Chem. Eng. J. 171, 1091–1097 (2011)

    Article  Google Scholar 

  29. Kuronen M., Weller M., Townsend R., Harjula R.: Ion exchange selectivity and structural changes in highly aluminous zeolite. React. Funct. Pol. 66, 1350–1361 (2006)

    Article  Google Scholar 

  30. Elmolla E.S., Chaudhuri M., Eltoukhy M.M.: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J. Hazard. Mater. 179, 127–134 (2010)

    Article  Google Scholar 

  31. Aber S., Amani-Ghadim A.R., Mirzajani V.: Removal of Cr (VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network. J. Hazard. Mater. 171, 484–490 (2009)

    Article  Google Scholar 

  32. Salari D., Daneshvar N., Aghazadeh F., Khataee A.R.: Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl tert-butyl ether (MTBE) by UV/H 2 O 2 process. J. Hazard. Mater. B125, 205–210 (2005)

    Article  Google Scholar 

  33. Yetilmezsay K., Demired S.: Artificial neural network (ANN) approach for modelling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L) Shells. J. Hazard. Mat. 153, 1288–1300 (2008)

    Article  Google Scholar 

  34. Abdulkareen S.A., Muzenda E., Afolabi A.S., Kabuba J.: Treatment of clinoptilolite as an Adsorbent for the Removal of copper Ion from Synthetic Wastewater solution. Arab. J. Sci. Eng. 38, 2263–2272 (2012)

    Article  Google Scholar 

  35. Mamba B.B., Nyembe D.W., Mulaba-Bafubiandi A.F.: The effect of conditioning with NaCl, KCl and HCl on the performance of natural clinoptilolite’s removal efficiency of Cu 2+ and Co 2+ Synthetic solution. Water S.A. 36, 437–444 (2009)

    Google Scholar 

  36. Daneshvar N., Kahataee A.R., Djafarzadeh N.: The use of artificial neural networks (ANN) for modelling of decolourization of textile dye solution containing C.I. basic Yellow 28 by electrocoagulation process. J. Hazard. Mat. B 137, 1788–1795 (2006)

    Article  Google Scholar 

  37. Kabuba J., Mulaba-Bafubiandi A., Battle Kim.: A critical study of neural networks Applied to ion-exchange Process. World Acad. Sci. Eng. Technol. 68, 1226–01229 (2012)

    Google Scholar 

  38. Hornik K., Stinchcombe M., White H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  39. Flood I., Kartam N.: Neural networks in civil engineering: systems and application. J. Comp. Civ. Eng. ASCE 8, 131–148 (1994)

    Article  Google Scholar 

  40. Baughman D.R., Liu Y.A.: Neural Networks in Bioprocessing and Chemical Engineering. Academic Press, San Diego (1995)

    Google Scholar 

  41. Toma F.L., Guessasma S., Klein D., Montavon G., Bertrand G., Coddet C.: Neural computation to predict TiO2 photocatalytic efficiency for nitrogen oxides removal. J. Photochem. Photobiol. A Chem. 165, 91–96 (2004)

    Article  Google Scholar 

  42. Giroto, J.A.; Guardani, R.; Teixeira, A.C.S.C.; Nascimento, C.A.O.: Study on the photo-Fenton degradation of polyvinyl alcohol in aqueous solution. Chem. Eng. Process. 45, 523–532 (2006)

  43. Oguz E., Tortum A., Keskinler B.: Determination of the apparent rate constants o the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solution with neural network. J. Hazard. Mater. 157, 455–463 (2008)

    Article  Google Scholar 

  44. Guimaraes O.L.C., Filho M.H.d.R., Siqueira A.F., Filho H.J.I., Silva M.B.: Optimization of the AZO dyes decoration process through neural networks; determination of the H2O2 addition critical point. Chem. Eng. J. 141, 35–41 (2008)

    Article  Google Scholar 

  45. Garson G.D.: Interpreting neural-network connection weights. AI Expert 6, 47 (1991)

    Google Scholar 

  46. Algarra M., Jimenez M.V., Rodriguez-Castellon E., Jimenez-Lopez A., Jimenez Jimenez J.: Heavy metals removal form electroplating wastewater by aminopropyl-Si MCM 41. Chemosphere 59, 779–786 (2005)

    Article  Google Scholar 

  47. Harris P.O., Ramelow G.J.: Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ. Sci. Technol. 24, 220–228 (1990)

    Article  Google Scholar 

  48. Aksu Z., Kutsa T.A.: A bioseparation process for removing Pb (II) ions from wastewater by using C. Vulgaris. J. Chem. Technol. Biotechnol. 52, 108–118 (1991)

    Google Scholar 

  49. Horsfall Jnr M, Spiff A.I.: Effects of metal ion concentration on the biosorption of Pb 2+ and Cd 2+ from aqueous solution by Caladium bicolor (Wild Cocoyan). Afr. J. Biotechnol. 4, 191–196 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kabuba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabuba, J., Mulaba-Bafubiandi, A. & Battle, K. Neural Network Technique for Modeling of Cu (II) Removal from Aqueous Solution by Clinoptilolite. Arab J Sci Eng 39, 6793–6803 (2014). https://doi.org/10.1007/s13369-014-1277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1277-2

Keywords

Navigation