Skip to main content
Log in

A Stable Lattice Boltzmann Method for Steady Backward-Facing Step Flow

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The severe problem of the most lattice Boltzmann methods (LBM) is the instability within the solution. This paper presents the implementation and applicability of a stable finite volume (FV) formulation of LBM for simulating steady separating and reattaching flow pasts backward-facing step geometry. For simulation purpose, a cell-centered scheme is implemented to discretize the convection operator and new weighting factors are used as flux correctors. Compared with previous FV formulations, a remarkable stability improvement is achieved and the secondary recirculation region is clearly captured for Reynolds numbers higher than 400. The simulation results show good agreement with benchmark data, which demonstrate the trustworthiness of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McNamara G.R., Zanetti G.: Use of the Boltzmann equation to simulate lattice automata. J. Phys. Rev. Let. 61, 2332–2335 (1988)

    Article  Google Scholar 

  2. Succi S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  3. Junk M., Klar A.: Discretizations for the incompressible Navier–Stokes equations based on the lattice Boltzmann method. SIAM. J. Sci. Comp. 22, 1–19 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lallemand P., Luo L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  5. Mc Cracken M.E.: Abraham, J.: Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E 71, 036701 (2005)

    Article  Google Scholar 

  6. Ansumali S., Karlin I.V.: Stabilization of the lattice Boltzmann method by the H-theorem: a numerical test. Phys. Rev. E 62, 7999–8003 (2000)

    Article  Google Scholar 

  7. Ansumali S., Karlin I.V., Ottinger H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003)

    Article  Google Scholar 

  8. Geier, M.C.: Ab initio derivation of the cascade lattice Boltzmann automation. PhD thesis, University of Freiburg (2003)

  9. Ricot D., Marié S., Sagaut P., Bailly C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228, 4478–4490 (2009)

    Article  MATH  Google Scholar 

  10. Nannelli F., Succi S.: The lattice Boltzmann equation on irregular lattices. J. Stat. Phys. 68, 401–407 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Breuer M., Bernsdorf J., Zeiser T., Durst F.: Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite volume. Int. J. Heat Fluid Flow 21, 186–196 (2000)

    Article  Google Scholar 

  12. d’Humieres D., Ginzburg I., Krafczyk M., Lallemand P., Luo L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R Soc. Lond. A 360, 437–451 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Azwadi N., Sidik C., Sahat I.M.: Finite difference and cubic interpolated profile lattice Boltzmann method for prediction of two-dimensional lid-driven shallow cavity flow. Arab. J. Sci. Eng. 37, 1101–1110 (2012)

    Article  Google Scholar 

  14. Azwadi N., Sidik C., Abdul Munir F.: Mesoscale numerical prediction of fluid flow in a shear driven cavity. Arab. J. Sci. Eng. 37, 1723–1735 (2012)

    Article  Google Scholar 

  15. He X., Doolen G.: Lattice Boltzmann method on a curvilinear coordinate system: vortex shedding behind a circular cylinder. Phys. Rev. E 56, 434–440 (1997)

    Article  Google Scholar 

  16. Yu D., Mei R., Shyy W.: A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Methods Fluids 39, 99–120 (2002)

    Article  MATH  Google Scholar 

  17. Niu X.D., Hyodo S., Suga K., Yamaguchi H.: Lattice Boltzmann simulation of gas flow over micro-scale airfoils. Comput. Fluids 38, 1675–1681 (2009)

    Article  MATH  Google Scholar 

  18. Chen S., Wang Z., Shan X.W., Doolen G.D.: Lattice Boltzmann computational fluid dynamics in three dimensions. J. Stat. Phys. 68, 379–400 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Benzi R., Struglia M.V., Tripiccione R.: Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence. Phys. Rev. E 53, 5565–5568 (1996)

    Article  Google Scholar 

  20. Aidun C.K., Clausen J.R.: Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech. 42, 439–472 (2010)

    Article  MathSciNet  Google Scholar 

  21. Ladd A.J.C., Verberg R.: Lattice Boltzmann simulations of particle fluid suspensions. J Stat. Phys. 104, 1191–1251 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ramachandran S., Sunil Kumar P.B., Pagonabarrag I.: A lattice-Boltzmann model for suspensions of self-propelling colloidal particles. Eur. Phys. J. E 20, 151–158 (2006)

    Article  Google Scholar 

  23. Sankaranarayanan K., Shan X., Devrekidis I.G., Sundaresan S.: Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method. J. Fluid Mech. 452, 61–96 (2002)

    Article  MATH  Google Scholar 

  24. Sankaranarayanan K., Kevrekidis I.G., Sundaresan S., Lu J., Tryggvason G.: A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations. Int. J. Multiph. Flow 29, 109–116 (2003)

    Article  MATH  Google Scholar 

  25. Aidun C.K., Lu Y.N., Ding E.J.: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287–311 (1998)

    Article  MATH  Google Scholar 

  26. Wu J., Aidun C.K.: Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int. J. Numer. Methods Fluids 62, 765–783 (2010)

    MATH  Google Scholar 

  27. Shan X.: Simulation of Rayleigh–Benard convection using a lattice Boltzmann method. Phys. Rev. E 55, 2780–2788 (1997)

    Article  Google Scholar 

  28. Mezrhab A., Bouzidi M., Lallemand P.: Hybrid lattice-Boltzmann finite-difference simulation of convective flows. Comput. Fluids 33, 623–641 (2005)

    Article  Google Scholar 

  29. Mishra C.S., Lankadasu A., Beronov K.: Application of the lattice Boltzmann method for solving the energy equation of a 2D transient conduction–radiation problem. Int. J. Heat. Mass Transf. 48, 3648–3659 (2005)

    Article  MATH  Google Scholar 

  30. Gupta N., Chaitanya G.R., Mishra S.C.: Lattice Boltzmann method applied to variable thermal conductivity conduction and radiation problems. J. Thermophys. Heat Transf. 20, 895–902 (2006)

    Article  Google Scholar 

  31. Succi S., Bella G., Papetti F.: Lattice kinetic theory for numerical combustion. J. Sci. Comput. 12, 395–408 (1997)

    Article  MATH  Google Scholar 

  32. Yamamoto K., He X., Doolen G.D.: Simulation of combustion field with lattice Boltzmann method. J. Stat. Phys. 107, 367–383 (2002)

    Article  MATH  Google Scholar 

  33. Yamamoto K., He X., Doolen G.D.: Combustion simulation using lattice Boltzmann method. JSME Int. J. 74, 403–409 (2004)

    Google Scholar 

  34. Yamamoto K., Takadab N., Misawa M.: Combustion simulation with lattice Boltzmann method in a three-dimensional porous structure. Proc. Combust. Inst. 30, 1509–1515 (2005)

    Article  Google Scholar 

  35. Zarghami A., Ubertini S., Succi S.: Finite volume lattice Boltzmann modeling of thermal transport in nanofluids. Comput. Fluids 77, 56–65 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Xi H., Peng G., Chou S.H.: Finite-volume lattice Boltzmann method. Phys. Rev. E 59, 6202–6205 (1999)

    Article  Google Scholar 

  37. Zarghami A., Maghrebi M.J., Ubertini S., Succi S.: Modeling of bifurcation phenomena in suddenly expanded flows with a new finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 22, 977–1003 (2011)

    Article  MATH  Google Scholar 

  38. Zarghami A., Di Francesco S., Biscarini C.: Porous substrate effects on thermal flows through a REV-scale finite volume lattice Boltzmann model. Int. J. Mod. Phys. C 25, 1350086 (2014)

    Article  Google Scholar 

  39. Zarghami A., Maghrebi M.J., Ghasemi J., Ubertini S.: Lattice Boltzmann finite volume formulation with improved stability. Commun. Comput. Phys. 12, 42–64 (2012)

    Google Scholar 

  40. Ghasemi J., Razavi S.E.: On the finite volume lattice Boltzmann modeling of thermo-hydrodynamics. Comput. Math. Appl. 60, 1135–1144 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zou Q., He X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. Chen S., Martinez D., Mei R.: On boundary conditions in lattice Boltzmann methods. Phys. Fluids 8, 2527–2536 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zarghami, A.; Biscarini, C.; Succi, S.; Ubertini, S.: Hydrodynamics in porous media: a FV-LB study. J. Sci. Comput. doi:10.1007/s10915-013-9754-4

  44. Armaly B.F., Durst F., Pereira J.C.F., Schonung B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983)

    Article  Google Scholar 

  45. Barton I.E.: A numerical study of floe over a confined backward-facing step. Int. J. Numer. Methods Fluids 21, 653–665 (1995)

    Article  MATH  Google Scholar 

  46. Guj G., Stella F.: Numerical solutions of high-Re recirculating flows in vorticity-velocity form. Int. J. Numer. Methods Fluids 8, 405–416 (1988)

    Article  MATH  Google Scholar 

  47. Erturk E.: Numerical solutions of 2D steady incompressible flow over a backward-facing step, part I: high Reynolds number solutions. Comput. Fluids 37, 633–655 (2008)

    Article  MATH  Google Scholar 

  48. Ubertini S., Succi S.: Recent advances of lattice Boltzmann techniques on unstructured grids. Prog. Comput. Fluid Dyn. 5, 85–96 (2005)

    Article  MathSciNet  Google Scholar 

  49. Chen C.K., Yen T.S., Yang Y.T.: Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle. Int. J. Heat. Mass Transf. 49, 1195–1204 (2006)

    Article  MATH  Google Scholar 

  50. Barber, R.W.; Fonty, A.: A numerical study of laminar flow over a confined backward facing step using a novel viscous-splitting vortex algorithm. In: 4th GRACM Congress, Patras, Greece (2002)

  51. Chiang T.P., Sheu T.W.H.: Vortical flow over a 3D backward facing step. Numer. Heat Transf. A 31, 167–192 (1997)

    Article  Google Scholar 

  52. Chiang T.P., Sheu T.W.H.: A numerical revisit of backward-facing step flow problem. Phys. Fluid 11, 862–874 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad Zarghami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarghami, A., Ahmadi, N. A Stable Lattice Boltzmann Method for Steady Backward-Facing Step Flow. Arab J Sci Eng 39, 6375–6384 (2014). https://doi.org/10.1007/s13369-014-1241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1241-1

Keywords

Navigation