Skip to main content
Log in

Characterization and Parameterization of Medicinal Drugs Using Analytical Techniques and Monitoring of Human Body Tissues

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In India, there are two types of medical treatment systems using various drugs, namely English medical treatment systems and Ayurveda, Unani and Siddha treatment system (AUSTS). The experiments for medicinal drugs were carried out with the help of biomedical optical spectroscopy techniques such as ultraviolet/visible, Fourier transform infrared and Fourier transform Raman. The spectral analysis indicated that the specific functional groups of the drug materials have almost the same chemical characteristics. The following functional groups are present N=C=O, –N=C=S,–N=C=N–, –N3, O=C–C, O=C–N, C=C–N, C=C–C and CH 3CH 2 and CH. After two dosages of the above drugs, the human body tissue sample were taken for test using Fourier transform infrared spectroscopy and it was found that the major chemical compounds are present and remaining functional groups are eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bright, A.; Renuga Devi, T.S.; et al.: Spectroscopical vibrational band assignment and qualitative analysis of biomedical compounds with cardiovascular activity. Int. J. Chem. Tech. Res., 2(1), 379–388 (2010)

    Google Scholar 

  2. Chamundeeswari, M.; Liji Sobhana, S.S.; et al.: Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol. Appl. Biochem. 55, 29–35 (2010)

    Article  Google Scholar 

  3. Chamundeeswari, M.; Senthil, V.; et al.: Preparation and characterization of nanobiocomposites containing iron nanoparticles prepared from blood and coated with chitosan and gelatin, Mater. Res. Bull. 46, 901–904 (2011)

    Article  Google Scholar 

  4. Davis, R.; Mauer, L.J.: Fourier transform infrared spectroscopy: a rapid tool for detection and analysis of food borne pathogenic bacteria, FORMATEX (2010)

  5. Caubet, C.; Simon, M.; et al.: A new amyloidosis caused by fibrillar aggregates of mutated corneodesmosin. The FASEB J. 24, 3416–3426 (2010)

    Article  Google Scholar 

  6. Chen, R.; Huang, C.; Mo, X.; et al.: Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf. B Biointerfaces, 79, 315–325 (2010)

    Article  Google Scholar 

  7. Wang, T.D.; Triadafilopoulos, G.; et al.: Detection of endogenous biomolecules in Barrett’s esophagus by FTIR 104(40), 15864–15869 (2007)

  8. Miller, J.N.; Miller, J.C.:Statistics and Chemometrics for Analytical Chemistry, 4th Ed. Prentice Hall, London (2000)

  9. Monograph Committee; Malaysian Herbal Monograph, Malaysian Monograph Committee, National Pharmaceutical Control Bureau, Ministry of Health Malaysia, Vol. 2 (2001)

  10. Chew, O.S.; Hamdan, M.R.; et al.: Nineteenth Annual Seminar & Workshop of the Malaysia Natural Products Society, Faculty of Science, University of Malaya, Malaysia, 13–16 October 2003

  11. David-Vaudey, E.; Burghardt, A.; et al.: FTIR of human osteoarthritic cartilage. E. Eur. Cells and Mater. 10, 51–60 (2005)

    Google Scholar 

  12. Irishina, N.; Moscoso, M. et al.: Microwave imaging for early breast cancer detection using a shape-based strategy. IEEE Trans. Biomed. Eng. 56(4), 1143–1153 (2009)

    Article  Google Scholar 

  13. Gunasekaran, S.; Abitha, P.: Fourier transform infrared and FT-Raman spectra and normal coordinate analysis of aminobenzoesausere. Ind. J. Pure Appl. Phys. 43, 329 (2005)

    Google Scholar 

  14. Gunasekaran, S.; Ponnambalam, U., Muthu, S., Kumaresan, S.: Vibrational spectra and normal coordinate analysis of fluorouracil. Indian J. Phys. 87(10), 1141–1145 (2004)

    Google Scholar 

  15. Gunasekaran, S.; Ponnambalam, U.; Muthu, S.: Spectroscopic investigation on the structure of Allopurinol. Acta Ciencia Indica XXV, 162–166 (2004)

  16. Anand, D.; Ramesh, P.: Fluorescence Anisotropy, FTIR spectra and 31-P NMR studies on the interaction of Paclitaxiel with lipid bilayer, lipids, vol. 43, pp. 569–579 (2008)

  17. Silerstein, R.M.; Clayton Oesslor, G.; et al.: Spectroscopic Identification of Organic Compounds 4E, Wiley, New York (1981)

  18. Miftahof, R.N; Nam, H.G.; Wingate, D.L.: Mathematical modeling and stimulation in enteric neurobiology. World scientific publishing company, Singapore (2009)

    Book  Google Scholar 

  19. Pullan, A.; Chery, L.; Yassi, R.; Buist, M.: Modeling GI biotech activity. Prog. Biophys. Mol. Biol. 85, 523–550 (2004)

    Article  Google Scholar 

  20. Cheng, L.; Komniro, R.; Austin, T.M.; Buist, M.L.; Pullan, A.J.: Anatomical realistic multiscale models of normal and abnormal GI electrical activity. World J. Gastroenterol., 7 March, pp. 1378–1383, (2007)

  21. Corrias, A., Brist, M.L.: A qualitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 35, 1595–1607 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Uthayakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uthayakumar, G.S., Sivasubramanian, A. Characterization and Parameterization of Medicinal Drugs Using Analytical Techniques and Monitoring of Human Body Tissues. Arab J Sci Eng 39, 5861–5872 (2014). https://doi.org/10.1007/s13369-014-1234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1234-0

Keywords

Navigation