Skip to main content
Log in

Determination of Gasoline Residues on Carpets by SPME–GC-MS Technique

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The analysis of traces ignitable liquids on a burned carpet could provide information to a forensic investigation. While the research on this field is still limited, this study illustrates the capabilities of the solid-phase microextraction coupled with gas chromatography-mass spectrometry to detect and identify gasoline residue from fire debris. The technique proved to be rapid, simple and efficient; it does not require specific skills or solvents for the extraction. The obtained results indicate that the amount of fuel used to ignite the carpet samples and a carpet thickness, play an important role on the presence and survival of the gasoline residues. This depends on the adsorption capacity of the burned carpet, where it is preferred to take samples from thin carpets rather than thick one, i.e., gasoline traces were detected up to 5 h, above carpet of 5mm thickness using 2mL accelerant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeHaan, J.: Kirk’s Fire Investigation, 5 edn. Pretence Hall, Upper Saddle River (2002)

  2. Muller D., Levy A., Shelef R.: Detection of gasoline on arson suspects’ hands. Forensic Sci. Int. 206, 150 (2011)

    Article  Google Scholar 

  3. Pert A.D., Baron M.G., Birkett J.W.: Review of analytical techniques for arson residues. J. Forensic Sci. 51, 1033 (2006)

    Article  Google Scholar 

  4. Stauffer E., Dolan J.A., Newman R.: Fire Debris Analysis. Academic Press, New York (2007)

    Google Scholar 

  5. Montani I., Comment S., Delemont O.: The sampling of ignitable liquids on suspects’ hands. Forensic Sci. Int. 194, 115 (2010)

    Article  Google Scholar 

  6. Lu Y., Chen P., Harrington P.B.: Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution. Anal. Bioanal. Chem. 394, 2061 (2009)

    Article  Google Scholar 

  7. Sigman M.E., Williams M.R.: Covariance mapping in the analysis of ignitable liquids by gas chromatography/mass spectrometry. Anal. Chem. 78, 1713 (2006)

    Article  Google Scholar 

  8. Borusiewicz R., Zadora G., Zieba-Palus J.: Application of head-space analysis with passive adsorption for forensic purposes in the automated thermal desorption-gas chromatography-mass spectrometry system. Chromatographia 60, S133 (2004)

    Article  Google Scholar 

  9. Baechler S., Comment S., Delemont O.: Extraction and concentration of vapors from fire debris for forensic purposes: evaluation of the use of Radiello passive air sampler. Talanta 82, 1247 (2010)

    Article  Google Scholar 

  10. Stauffer, E.: The Role of the Forensic Scientist in the New Millennium with the Example of Fire Debris Analysis (2006). http://www.aafs.org/yfsf/Essays/StaufferEssay.htm

  11. Tan B., Hardy J.K., Snavely R.E.: Accelerant classification by gas chromatography/mass spectrometry and multivariate pattern recognition. Analytica Chimica Acta 422, 37 (2000)

    Article  Google Scholar 

  12. Choodum A., Daeid N.N.: Development and validation of an analytical method for hydrocarbon residues using gas chromatography-mass spectrometry. Anal. Methods 3, 1136 (2011)

    Article  Google Scholar 

  13. Borusiewicz R., Zadora G., Zieba-Palus J.: Application of head-space analysis with passive adsorption for forensic purpose in the automated thermal desorption-gas chromatography-mass spectrometry system. Chromatographia 60, S133 (2004)

    Article  Google Scholar 

  14. Cavanagh K., Pasquier E.D., Lennard C.: Background interference from car carpets-the evidential value of petrol residues in cases of suspected vehicle arson. Forensic Sci. Int. 125, 22 (2002)

    Article  Google Scholar 

  15. Borusiewicz R., Zieba-Palus J., Zadora G.: The influence of the type of accelerant, type of burned material, time of burning and availability of air on the possibility of detection of accelerants traces. Forensic Sci. Int. 160, 115 (2006)

    Article  Google Scholar 

  16. Choodum A., Daeid N.N.: Evaluating the performance of three GC columns commonly used for the analysis of ignitable liquid mixtures encountered in fire debris. Anal. Methods 3, 1525 (2011)

    Article  Google Scholar 

  17. Arthur C.L., Pawliszyn J.: Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62, 2145 (1990)

    Article  Google Scholar 

  18. Almirall, J.R. Furton, K.G.: Sample preparation in field and laboratory. In: Pawliszyn, J.B. (Ed.) Elsevier, Amsterdam (2002)

  19. Harris A.C., Wheeler J.F.: GC-MS of ignitable liquids using solvent-desorbed SPME for automated analysis. J. Forensic Sci. 48, 41 (2003)

    Google Scholar 

  20. Stahl D.C., Tilotta D.C.: Partition infrared method for total gasoline range organics in water based on solid phase microextraction. Environ. Sci. Technol. 33, 814 (1999)

    Article  Google Scholar 

  21. Lavine B.K., Ritter J., Moores A.J., Wilson M., Faruque A., Mayfield H.T.: Source identification of underground fuel spills by solid-phase microextraction/high-resolution gas chromatography/genetic algorithms. Anal. Chem. 72, 423 (2000)

    Article  Google Scholar 

  22. Dewsbury P., Thornton S.F., Lerner D.N.: Improved analysis of MTBE, TAME and TBA in petroleum fuel-contaminated groundwater by SPME using deuterated internal standards with GC-MS. Environ. Sci. Technol. 37, 1392 (2003)

    Article  Google Scholar 

  23. Furton K.G., Wang J., Hsu Y.L., Walton J., Almirall J.R.: The use of solid-phase microextraction-gas chromatography in forensic analysis. J. Chromatogr. Sci. 38, 297 (2000)

    Article  Google Scholar 

  24. Almirall J.R., Wang J., Lothridge K., Furton K.G.: The detection and analysis of ignitable liquid residues extracted from human skin using SPME/GC. J. Forensic Sci. 45, 453 (2000)

    Google Scholar 

  25. Furton K.G., Almirall J.R., Bi M., Wang J., Wu L.: Application of solid-phase microextraction to the recovery of explosives and ignitable liquid residues from forensic specimens. J. Chromatogr. A 885, 419 (2000)

    Article  Google Scholar 

  26. Calderara S., Gardebas D., Martinez F.: Solid phase micro extraction coupled with on-column GC/ECD for the post-blast analysis of organic explosives Forensic Sci. Int. 137, 6 (2003)

    Google Scholar 

  27. Almirall J.R., Bruna J., Furton K.G.: The recovery of accelerants in aqueous samples from fire debris using solid-phase microextraction (SPME). Sci. Justice 36, 283 (1996)

    Article  Google Scholar 

  28. Furton K.G., Bruna J., Almirall J.R.: A simple, inexpensive, rapid, sensitive and solventless technique for the analysis of accelerants in fire debris based on SPME. J. High Resolut. Chromatogr. 18, 625 (1995)

    Article  Google Scholar 

  29. Furton K.G., Almirall J.R., Wang J.: In investigation and forensic science technologies. K. Higgins. Proc. SPIE-Int. Soc. Opt. Eng. 3576, 136 (1999)

    Google Scholar 

  30. Darrer M., Jacquemet-Papilloud J., Delemont O.: Gasoline on hands: preliminary study on collection and persistence. Forensic Sci. Int. 175, 171 (2008)

    Article  Google Scholar 

  31. Whyte C., Wyche K.P., Kholia M., Ellis A.M., Monks P.S.: Fast fingerprinting of arson accelerants by proton transfer reaction time-of-flight mass spectrometry Int. J. Mass Spectrom. 263, 222 (2007)

    Google Scholar 

  32. Bodle E., Hardy J.K.: Multivariate pattern recognition of petroleum-based accelerants by solid-phase microextraction gas chromatography with flame ionization detection. Analytica Chimica Acta 589, 247 (2007)

    Article  Google Scholar 

  33. Monfreda M., Gregori A.: Differentiation of unevaporated gasoline samples according to their brands, by SPME-GC-MS and multivariate statistical analysis. J. Forensic Sci. 56, 372 (2011)

    Article  Google Scholar 

  34. Sandercock P.M.: Fire investigation and ignitable liquid residue analysis—a review: 2001–2007. Forensic Sci. Int. 176, 93 (2008)

    Article  Google Scholar 

  35. Vas G., Vekey K.: Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39, 233 (2004)

    Article  Google Scholar 

  36. Bell S.: Forensic Chemistry. Prentice Hall, Englewood Cliffs (2005)

    Google Scholar 

  37. Pawliszyn J.: Solid Phase Microextraction, Theory and Practice. Wiley, New York (1997)

    Google Scholar 

  38. Wercinski S.A.: Solid Phase Extraction, A Practical Guide. Marcel Dekker, New York (1999)

    Book  Google Scholar 

  39. American Society for Testing and Materials, ASTM Method E 1618-01 Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatograph-Mass Spectrometry, Annual Book of ASTM Standards, (2002)

  40. Coulson S.A., Morgan-Smith R.K.: The transfer of petrol on to clothing and shoes while pouring petrol around a room. Forensic Sci. Int. 112, 135 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Aqel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhabbah, A.M., Al-Jaber, S.S., Al-Ghamdi, A.H. et al. Determination of Gasoline Residues on Carpets by SPME–GC-MS Technique. Arab J Sci Eng 39, 6749–6756 (2014). https://doi.org/10.1007/s13369-014-1233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1233-1

Keywords

Navigation