Skip to main content
Log in

Aluminum Pillared Palygorskite-Supported Nanoscale Zero-Valent Iron for Removal of Cu(II), Ni(II) From Aqueous Solution

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A new composite clay, aluminum pillared palygorskite-supported nanoscale zero-valent iron (Al–P-nZVI), was prepared by reducing ferric ion (FeCl3.6H2O) to Fe0 with sodium borohydride (NaBH4) on aluminum pillared palygorskite, in order to improve metal ions adsorption capacities of palygorskite and reduce nanoscale zero-valent iron reunion. The composite clay was characterized by FTIR, TEM and XRD spectra. Batch isothermal equilibrium adsorption experiments were conducted to evaluate the clay adsorbent for the removal of Cu(II) and Ni(II) from water. The effects of pH, shaking time on adsorption capacity were also investigated. The pseudo-second-order model was relatively suitable for describing the reaction process. The equilibrium adsorption data were fitted to Langmuir adsorption models. The maximum adsorption capacities of aluminum pillared palygorskite-supported nanoscale zero-valent iron sorbent as obtained from Langmuir adsorption isotherm were found to be 787 and 704 mg g−1 for Cu(II) and Ni(II), respectively. A comparison of the results of the present investigation with those reported in the literature showed that Al–P-nZVI exhibits greater adsorption capacity for Cu(II)and Ni(II). These results demonstrated that Al–P-nZVI could potentially be used as an effective material for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulkareem S. A, Muzenda E, Afolabi A. S, Kabuba J.: Treatment of clinoptilolite as an adsorbent for the removal of copper ion from synthetic wastewater solution. Arab. J. Sci. Eng. 38, 2263–2272 (2013)

    Article  Google Scholar 

  2. Bailey E.S, Olin T.J, Bricka R.M, Adrian D.D.: A review of potentially low-cost sorbents for heavy metals, Water Res.. 33, 2469 (1999)

    Article  Google Scholar 

  3. Spiro, G.T.; Stigliani, W.M.: Chemistry of the Environment, Prentice-Hall, New Jersey (1996)

  4. Li X.Q, Elliott D.W, Zhang W.X.: Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mat. Sci. 31, 111–122 (2006)

    Google Scholar 

  5. Sun Y.P, Li X.Q, Cao J, Zhang W.X, Wang H.P.: Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 120, 47–56 (2006)

    Article  Google Scholar 

  6. Cumbal L, Greenleaf J, Leun D, Sen Gupta A.K.: Polymer supported inorganic nanoparticles: characterization and environmental applications. React. Funct. Polym. 54, 167–180 (2003)

    Article  Google Scholar 

  7. Nurmi J.T, Tratnyek P.G, Sarathy V, Baer D.R, Amonette J.E, Pecher K, Wang C, Linehan J.C, Matson D.W, Penn R.L, Driessen M.D.: Characterization and properties of metallic ion nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221–1230 (2005)

    Article  Google Scholar 

  8. Wei, Y.T.; Wu, S.C.; Yang, S.W.; Che, C.H.; Lien, H.L.; Huang, D.H.: Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J. Hazard. Mater. 211–212, 373–380 (2012)

  9. He F, Zhao D.Y.: Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39, 3314–3320 (2005)

    Article  Google Scholar 

  10. Shi Z, Nurmi J.T, Tratnyek P.G.: Effects of nano zero-valent iron on oxidation–reduction potential. Environ. Sci. Technol. 45, 586–1592 (2011)

    Article  Google Scholar 

  11. Fu F.G, Han W.J, Huang C.J, Tang B, Hu M.: Removal of Cr(VI) from wastewater by supported nanoscale zero-valent iron on granular activated carbon. Desalination Water Treat. 51, 2680–2686 (2013)

    Article  Google Scholar 

  12. Zhang Y, Li Y, Li J, Hu L, Zheng X.: Enhanced removal of nitrate by a novel composite: nanoscale zero valent iron supported on pillared clay. Chem. Eng. J. 171, 526–531 (2011)

    Article  Google Scholar 

  13. Lv X.S, Xu J, Jiang G.M, Xu X.H.: Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multi-walled carbon nanotubes. Chemosphere 85, 1204–1209 (2011)

    Article  Google Scholar 

  14. Liu, T.; Wang, Z.L.; Zhao, L.; Yang, X.: Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater. Chem. Eng. J. 189–190, 196–202 (2012)

  15. Calabro, P.S.; Moraci, N.; Suraci, P.: Estimate of the optimum weight ratio in zero-valent/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater, J. Hazard. Mater. 207–208, 111–116 (2012)

  16. Kim H, Hong H.J, Lee Y.J, Shin H.J, Yang J.W.: Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane. Desalination 223, 212–220 (2008)

    Article  Google Scholar 

  17. Kim S.A, Kannan S. K, Lee K.J, Park Y.J, Shea P. J, Lee W.H, Kim H.M, Oh B.T.: Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem. Eng. J. 217, 54–60 (2013)

    Article  Google Scholar 

  18. Zhang X, Lin S, Chen Z.L, Mallavarapu M, Ravendra N.D.: Kaolinite-supported nanoscale zero-valent ion for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Res. 45, 3481–3488 (2011)

    Article  Google Scholar 

  19. Zhang X, Lin S, Lu X.Q, Chen Z.L.: Removal of Pb(II) from water using natural kaolin loaded with synthesized nanoscale zero-valent ion. Chem. Eng. J. 163, 243–248 (2010)

    Article  Google Scholar 

  20. Helmy A.K, Bussetti S.G, Ferreiro E.A.: The surface energy of palygorskite. Powder Technol. 171, 126–131 (2007)

    Article  Google Scholar 

  21. Ponder S.M, Darab J.G, Mallouk T.E.: Remediation of Cr(VI) and Pb(II) aqueous solutions using nanoscale zero valent iron. Environ. Sci. Technol. 34, 2564–2569 (2000)

    Article  Google Scholar 

  22. Zhang L.X, Jin Q.Z, Shan L, Liu Y.F, Wang X.G, Huang J.H.: H3PW12O40 immobilized on silylated palygorskite and catalytic activity in esterification reactions. Appl. Clay. Sci. 47, 229–234 (2010)

    Article  Google Scholar 

  23. Frost R. L, Xi Y.F, He H.P.: Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption. J. Colloid Interface Sci. 341, 153–161 (2010)

    Article  Google Scholar 

  24. Ruiz-Hitaky E, Galvan J. C, Merino J, Casal B, Aranda P, Jimenenz-Morales A.: Proton conductivity in Al-montmorillonite pillared clays. Solid State Ionics 85, 313–317 (1996)

    Article  Google Scholar 

  25. Pires J, Francisco J, Carvalho A, Brotasde Carvalho M, Silva A.R, Freire C.: Development of novel pillared clays for the encapsulation of inorganic complexes. Langmuir 20, 2861–2866 (2004)

    Article  Google Scholar 

  26. Barrera-Vargas M, Valencia-Rios J, Vicente M. A, Korili S. A, Gil A.: Effect of the platinum content on the microstructure and micropore size distribution of Pt/Alumina-pillared clays. J. Phys. Chem. B 109, 23461–23465 (2005)

    Google Scholar 

  27. Uzum C, Shahwan T, Eroglu A.E, Hallam K.R, Scott T.B, Lieberwirth I.: Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl. Clay. Sci. 43, 172–181 (2009)

    Article  Google Scholar 

  28. Canafoglia M.E, Lick I.D, Ponzi E.N, Botto I.L.: Natural materials modified with transition metals of the cobalt group: feasibility in catalysis. J. Argent. Chem. Soc. 97, 58–68 (2009)

    Google Scholar 

  29. Lee S, Lee K, Rhee S, Park J.: Development of a new zero-valent iron zeolite material to reduce nitrate without ammonium release. J. Environ. Eng. 133, 6–12 (2007)

    Article  Google Scholar 

  30. Drbohlavova J, Hrdy R, Adam V, Kizek R, Schneeweiss O, Hubalek J.: Preparation and properties of various magnetic nanoparticles. Sensors 9, 2352–2362 (2009)

    Article  Google Scholar 

  31. Selwyn, L.: Overview of archaeological ion: the corrosion problem, key factors affecting treatment, and gaps in current knowledge. In: J. Ashton, Hallam (eds) Metal 2004: Proceedings of Interim Meeting of the ICOM-CC Metal WG, National Museum of Australia, Canberra, pp. 294–306 (2004)

  32. Boudrahem, F.; Aissani-Benissad, F.; A. Soualah A.: Kinetic and Equilibrium study of the sorption of lead(II) ions from aqueous phase by activated carbon. Arab. J. Sci. Eng. 38, 1939–1949 (2013)

  33. Albadarin A.B, Mangwandi C, Al-Muhtaseb A. H, Walker G.M, Allen S.J, Ahmad M.N.M.: Kinetic thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. 179, 193–202 (2012)

    Article  Google Scholar 

  34. Nityanandi D, Subbhuraam C.V.: Kinetics and thermodynamic of adsorption of chromium(VI) from aqueous solution using puresorbe. J. Hazard. Mater. 170, 876–882 (2009)

    Article  Google Scholar 

  35. Eren E, Afsin B.: Investigation of a basic dye adsorption from the aqueous solution onto raw and pre-treated bentonite surface. Dyes Pigm. 76, 220–225 (2008)

    Article  Google Scholar 

  36. Liu Z.G, Zhang F.S.: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater. 167, 933–939 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., He, Yy., Liu, T. et al. Aluminum Pillared Palygorskite-Supported Nanoscale Zero-Valent Iron for Removal of Cu(II), Ni(II) From Aqueous Solution. Arab J Sci Eng 39, 6727–6736 (2014). https://doi.org/10.1007/s13369-014-1229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1229-x

Keywords

Navigation