Skip to main content
Log in

Modeling and Analysis of Surface Roughness of AL7075-T6 in End Milling Process Using Response Surface Methodology

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The quality of the surface is significantly important for evaluating the productivity of machine tools and mechanical parts. Optimum cutting condition is an extremely important task as it determines the surface quality of the manufactured parts. In this paper, a statistical model has been developed to predict surface roughness in terms of tool geometry such as rake angle, nose radius of cutting tool and machining parameters such as cutting speed, cutting feed rate and axial depth of cut. Response surface methodology experimental design has been engaged in conducting experiments. The workpiece material is aluminum (AL7075-T6), and the tool used is high-speed steel end mill cutter with different geometry. The surface roughness of machined surface is measured by Mitutoyo Surf Test SJ201. The second-order mathematical model in terms of machining parameters was evolved for predicting surface roughness. The adequacy of the model was checked by employing ANOVA. The direct and interaction effect are graphically plotted which aids to study the significance of these parameters with surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J.Z.; Chen, J.C.; Kirby, E.D.: Surface roughness optimization in an end-milling operation using the Taguchi design method. Int. J. Mater. Process. Technol. 184, 233–239 (2007)

    Article  Google Scholar 

  2. Cui, X.; Zhao, J.; Jia, C.; Zhou, Y.: Surface roughness and chip formation in high-speed face milling AISI H13 steel. Int. J. Adv. Manuf. Technol. (2011). doi:10.1007/s00170-011:3684-9

  3. Pinar, A.M.: Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 Aluminum Alloy via Taguchi method. Arab. J. Sci. Eng. 38(3), 705–714 (2013)

    Article  MathSciNet  Google Scholar 

  4. Kadirgama, K.; Noor, M.M.; Rahman, M.M.: Optimization of surface roughness in end milling using potential support vector machine. Arab. J. Sci. Eng. 37(8), 2269–2275 (2012)

    Article  Google Scholar 

  5. Sharma, A.; Sharma, M.D.; Sehgal, R.: Experimental study of machining characteristics of titanium alloy (Ti–6Al–4 V). Arab. J. Sci. Eng. (2012). doi:10.1007/s13369-012-0451-7

  6. John, M.R.S.; Vinayagam, B.K.: Optimization of ball burnishing process on tool steel (T215Cr12) in CNC machining centre using response surface methodology. Arab. J. Sci. Eng. 37(7), 1407–1422 (2011)

    Article  Google Scholar 

  7. Ganesan, H.; Mohankumar, G.: Optimization of machining techniques in CNC turning centre using genetic algorithm. Arab. J. Sci. Eng. (2011). doi:10.1007/s13369-013-0539-8

  8. Saikumar, S.; Shanmugam, M.S.: Development of a feed rate adaption control system for high-speed rough and finish end-milling of hardened EN24 steel. Int. J. Adv. Manuf. Technol. (2011). doi:10.1007/s00170-011:3561-6

  9. Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S.: Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations. Int. J. Adv. Manuf. Technol. 32, 644–655. (2007). doi:10.1007/s00170-005:0384-3

  10. Wang, M.-Y.; Chang, H.-Y.: Experimental study of surface roughness in slot end milling AL2014-T6. Int. J. Mach. Tools Manuf. 44, 51–57 (2004)

    Article  MathSciNet  Google Scholar 

  11. Sahin, Y.; Motorcu, A.R.: Surface roughness model for machining mild steel with coated carbide tools. Int. J. Mater. Des. 26, 321–326 (2005)

    Google Scholar 

  12. Quintana, G.; Garcia-Romeu, M.L.; Ciurana, J.: Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Int. J. Manuf. 22, 607–617 (2011)

    Article  Google Scholar 

  13. Risbood, K.A.; Dixit, U.S.; Sahasrabudhe, A.D.: Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. Int. J. Mater. Process. Technol. 132, 203–214 (2003)

    Article  Google Scholar 

  14. Khidhir, B.A., Mohamed, B.: Study of cutting speed on surface roughness and chip formation when machining nickel-based alloy. Int. J. Mech. Sci. Technol. 24(5), 1053–1059 (2010)

    Article  Google Scholar 

  15. Routara, B.C.; Bandyopadhyay, A.; Sahoo, P.: Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation. Int. J. Adv. Manuf. Technol. 40, 1166–1180 (2009)

    Article  Google Scholar 

  16. Ozcelik, B.; Bayramoglu, M.: The statistical modeling of surface roughness in high-speed flat end milling. Int. J. Mach. Tools Manuf. 46, 1395–1402 (2006)

    Article  Google Scholar 

  17. Alauddin, M.; El Baradie, M.A.; Hashmi, M.S.J.: Computer-aided analysis of a surface-roughness model for end milling. J. Mater. Process. Technol. 55, 123–127 (1995)

    Article  Google Scholar 

  18. Lou, M.S.; Chen, J.C.; Li, C.M.: Surface roughness prediction technique for CNC end-milling. J. Ind. Technol. 15(1), 1–6 (1999)

    Google Scholar 

  19. Oktem, H.; Erzurumlu, T.; Kurtaran, H.: Application of response surface methodology in the optimization of cutting conditions for surface roughness. J. Mater. Process. Technol. 170, 11–16 (2005)

    Article  Google Scholar 

  20. Patel, K.P.: Experimental analysis on surface roughness of CNC End milling process using Taguchi design method, I. J. Eng. Sci. Technol.4(2), 540–545 (2012)

    Google Scholar 

  21. Astakhov, V.P.: Effects of the cutting feed, depth of cut, and workpiece (bore) diameter on the tool wear rate. Int. J. Adv. Manuf. Technol (2007). doi:10.1007/s00170-006-0635-y:1-10

  22. Cochran, W.G.; Cox, G.M.: Experimental Design. Asia Publishing, India (1963)

    Google Scholar 

  23. Montgomery, D.C.; Peck, E.F.: Introduction to Linear Regression Analysis. Wiley, New York (2005)

    Google Scholar 

  24. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2005)

    MATH  Google Scholar 

  25. Cyril, D.; George, H.L.; Goold, V.C.: Tool Design. Tata McGraw-Hill, New York (1957)

    Google Scholar 

  26. Stephenson, D.A.; Agapiou, J.S.: Metal Cutting Theory and Practice. Taylor and Francis, London (2006)

    Google Scholar 

  27. Bhattacharyya, A.: Metal Cutting Theory and Practice. New Central Book Agency, Calcutta (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Subramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, M., Sakthivel, M. & Sudhakaran, R. Modeling and Analysis of Surface Roughness of AL7075-T6 in End Milling Process Using Response Surface Methodology. Arab J Sci Eng 39, 7299–7313 (2014). https://doi.org/10.1007/s13369-014-1219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1219-z

Keywords

Navigation