Skip to main content
Log in

Modeling and Analysis of the Slip Conditions in Hydrodynamic Lubrication

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In hydrodynamic lubrication, the slip conditions have been studied previously from the model of the slip length and the wall shear stress, but recently, in the literature on the slip at the interface fluid–solid, it has been shown that many questions will remain unsolved for long time to come. In fact, the modeling of the back-flow near the wall was not really taken into account. In this paper, we propose a more rigorous writing of the Reynolds equation (modified), taking into account the phenomena of slip and back-flow at wall. Subsequently, this equation is applied to the case of an inclined pad bearing and the results show that there is a significant influence of those phenomena on the operating characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Dimensionless slip coefficient (A = α η/ h 2)

B (m):

Width of the inclined pad in the z-direction

b (μ m):

Slip length

\({\overline {F_m } }\) :

Dimensionless frictional force (\({\overline {F_m } =Fm.h_2 /ULB\eta )}\)

Fm (N):

Frictional force

H :

Dimensionless fluid-film thickness (H = h/ h 1)

h (μm):

Fluid-film thickness

h 1 (μm):

Fluid-film thickness at the entry

h 2 (μm):

Fluid-film thickness at the exit

L(m):

Length of the inclined pad in the x-direction

L xz :

Report of L/B

Oxyz:

Cartesian coordinate system

P :

Dimensionless pressure (\({P=ph_2^2 /\eta UL)}\)

p (Pa):

Pressure

Pu (W):

Dissipated power

\({\overline Q }\) :

Dimensionless carried load (\({\overline Q = Qh_2^2 /BL^2\eta U)}\)

Q (N):

Carried load

\({\overline {q_x }}\) :

Dimensionless flow rate (\({\overline {q_x } =q_x /UBh_2 )}\)

q x (m2/s):

Flow rate per length unit in the x direction

q z (m2/s):

Flow rate per length unit in the z direction

T c :

Dimensionless critical surface shear stress (\({T_c =\tau _c h_2 /\eta U)}\)

U (m/s):

Velocity of the bottom wall of the inclined pad

U(y):

Dimensionless velocity (U(y)=u(y)/U)

u p (m/s):

Fluid velocity at the wall

u, v, w (m/s):

Fluid velocities in the x, y, z directions

U 1, U 2 (m/s):

Velocities of the walls 1 and 2 in the x-direction

V 1, V 2 (m/s):

Velocities of the walls 1 and 2 in the y−direction

W 1, W 2 (m/s):

Velocities of the walls 1 and 2 in the z-direction

X :

Dimensionless length of the inclined pad in the x-direction (X = x/L)

Y :

Dimensionless height of the inclined pad in the y-direction (Y = y/ h 2)

Z :

Dimensionless width of the inclined pad in the z-direction (Z = z/B)

α (m/Pa s):

Slip coefficient

\({\dot {\gamma }_p }\) (s−1):

Wall shear rate

η (Pa s):

Dynamic viscosity of the lubricant

ρ(kg/m3):

Density of the lubricant

τ (Pa):

Shear stress in the fluid

τ c (Pa):

Critical surface shear stress

τ p (Pa):

Wall shear stress

References

  1. Frêne, J.; Nicolas, D.; Degueurce, B.; Berthe, D.; Godet, M.: Hydrodynamic Lubrication: Bearings and Thrust Bearings. Tribology Series, 33, Editor: D. Dowson Elsevier (1997)

  2. Thompson P.A., Troian S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Article  Google Scholar 

  3. Navier C.L.M.H.: Mémoire sur les Lois du Mouvement des Fluides. Mem. Acad. Sci. Inst. Fr. 6, 389–440 (1823)

    Google Scholar 

  4. Maxwell J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1879)

    Article  MATH  Google Scholar 

  5. Zhu Y., Granik S.: Limits of the hydrodynamic no-slip boundary conditions. Phys. Rev. Lett. 88(10), 106102 (2002)

    Article  Google Scholar 

  6. Chappuis J.: Lubrication by a new principle: the use of non-wetting liquids. Wear. 77(3), 303–313 (1982)

    Article  Google Scholar 

  7. Koran F., Dealy J.M.: Wall slip of polyisobutylene: interfacial and pressure effects. J. Rheol. 43(5), 1291–1306 (1999)

    Article  Google Scholar 

  8. Sochi T.: Slip at fluid-solid interface. Polym. Rev. 51(4), 309–340 (2011)

    Article  Google Scholar 

  9. Spikes H., Granick S.: Equation for slip of simple liquids at smooth solid surfaces. Langmuir. 19(12), 5065–5071 (2003)

    Article  Google Scholar 

  10. Neto C., Evans D.R., Bonaccurso E., Butt H.J., Craig V.S.J.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859–2897 (2005)

    Article  Google Scholar 

  11. Granick S., Zhu Y., Lee H.: Slippery questions about complex fluids flowing past solids. Nat. Mater. 2(4), 221–227 (2003)

    Article  Google Scholar 

  12. Joseph, P.; Tabeling, P.: Direct measurement of the apparent slip length. Phys. Rev. E. 71(3), 035303-1–035303-4 (2005)

  13. Larson R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, New York (1999)

    Google Scholar 

  14. Joseph, P.: Étude Expérimentale du Glissement sur Surfaces Lisses et Texturées. Doctoral Thesis, Division of Physics of Liquids, Paris 6 university, France (2005)

  15. Vinogradova O.I.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56(1-4), 31–60 (1999)

    Article  Google Scholar 

  16. Hervet H., Léger L.: Flow with slip at the wall: from simple to complex fluids. C. R. Phys. 4(2), 241–249 (2003)

    Article  Google Scholar 

  17. Tretheway D.C., Meinhart C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14(3), L9–L12 (2002)

    Article  Google Scholar 

  18. Tretheway D.C., Meinhart C.D.: A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys. Fluids 16(5), 1509–1515 (2004)

    Article  Google Scholar 

  19. Spikes H.A.: The half-wetted bearing part 1: extended Reynolds equation. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 217(1), 1–14 (2003)

    Article  Google Scholar 

  20. Spikes H.A.: The half-wetted bearing part 2: potentiel application in low load contact. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 217(1), 15–26 (2003)

    Article  Google Scholar 

  21. Salant R.F., Fortier A.E.: Numerical analysis of a slider bearing with a heterogeneous slip/no-slip surface. Tribol. Trans. 47(3), 328–334 (2004)

    Article  Google Scholar 

  22. Fortier A.E., Salant R.F.: Numerical analysis of a journal bearing with a heterogeneous slip/no-slip surface. ASME J. Tribol. 127(4), 820–825 (2005)

    Article  Google Scholar 

  23. Ma G.J., Wu C.W., Zhou P.: Wall slip and hydrodynamics of two-dimensional journal bearing. Tribol. Int. 40, 1056–1066 (2007)

    Article  Google Scholar 

  24. Wang L.L., Lu C.H., Wang M., Fu W.X.: The numerical analysis of the radial sleeve bearing with combined surface slip. Tribol. Int. 47, 100–104 (2012)

    Article  Google Scholar 

  25. Kozicki W., Hsu C.J., Tru C.: Non-Newtonian flow through packed beds and porous media. Chem. Eng. Sci. 22, 487–502 (1967)

    Article  Google Scholar 

  26. Tuck E.O., Kouzoubovt A.: A laminar roughness boundary condition. J. Fluid Mech. 300, 59–70 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xu J., Li Y.: Boundary conditions at the solid–liquid surface over the multiscale channel size from nanometer to micron. Int. J. Heat Mass Transf. 50, 2571–2581 (2007)

    Article  MATH  Google Scholar 

  28. Pit R., Hervet H., Léger L.: Friction and slip of a simple liquid at a solid surface. Tribol. Lett. 7, 147–152 (1999)

    Article  Google Scholar 

  29. Sykes, P.; Rallison J.M.: Lubrication theory for a fibre suspension. Part 1: pressure-driven flow in a planar channel having slowlyvarying cross-section. J. Non-Newton. Fluid Mech. 71, 109–136 (1997)

  30. Zhou J.F., Gu B.Q., Shao C.L.: Boundary velocity slip of pressure driven liquid flow in a micron pipe. Chin. Sci. Bull. 56(15), 1603–1610 (2011)

    Article  Google Scholar 

  31. Xiaoling, Z.; Kun, L.; Tao, L.; Dechun, B.: Research on slip flow in nanofluidic channel in recent years. http://www.paper.edu.cn/download/downPaper/200908-164

  32. Taylor G.: Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A. 209, 447–461 (1951)

    Article  MATH  Google Scholar 

  33. Hatzikiriakos S.G.: Wall slip of molten polymers. Prog. Polym. Sci. 37(4), 624–643 (2012)

    Article  Google Scholar 

  34. Reynolds O.: On the theory of lubrication and its application to Mr Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. 177, 157–234 (1886)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Zidane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidane, I., Zahloul, H., Hajjam, M. et al. Modeling and Analysis of the Slip Conditions in Hydrodynamic Lubrication. Arab J Sci Eng 39, 7199–7210 (2014). https://doi.org/10.1007/s13369-014-1214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1214-4

Keywords

Navigation