Skip to main content
Log in

Geometric and Material Nonlinear Analysis of Square-Based Tensegrity Ring Structures

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Modeling with a combined geometric and material nonlinear analysis is described in this paper and applied to tensegrity rings representing the last generation of the tensegrity systems. The resulting algorithm model is new; it takes into account slackening and yielding of cables. The usual Newton–Raphson iterative method is used, but in an updated Lagrangian formulation. The response of an isolated and an assembly of several square-based ring cells subjected to different types of loads has been investigated by means of nodal displacements. It is shown that the tensegrity rings are less flexible as compared to the classical tensegrity systems. Special attention is paid to the influence of the slackening and yielding of cables on the total nonlinear behavior. It has been found that their combination in a nonlinear analysis model is important for a better understanding of the response of tensegrity rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kebiche K., Kazi-Aoual M.N., Motro R.: Geometrical nonlinear analysis of tensegrity systems. Eng. Struct. J. 21, 864–76 (1999)

  2. Abedi K., Shekastehband B.: Static stability behavior of plane double-layer tensegrity structures. Int. J. Space Struct. 23, 89–102 (2008)

    Article  Google Scholar 

  3. Ben Kahla N., Kebiche K.: Nonlinear elasto-plastic analysis of tensegrity systems. Eng. Struct. J. 23, 1552–1566 (2000)

    Article  Google Scholar 

  4. Atai A.A.: Equilibrium analysis of elasto-plastic cable nets. Comput. Struct. 66, 163–171 (1998)

    Article  MATH  Google Scholar 

  5. Murakami H.: Static and dynamic analyses of tensegrity structures. Part I. Nonlinear equations of motion. Int. J. Solids Struct. 38, 5223–5252 (2001)

    Google Scholar 

  6. Lopez-Garcia O., Carnicero A., Torres V., Jimenez-Octavio J.R.: The influence of cable slackening on the stiffness computation of railway overheads. Int. J. Mech. Sci. 50, 1213–1223 (2008)

    Article  Google Scholar 

  7. Nguyen, A.D.: Etude du comportement mécanique et du pliage d’un anneau de tensegrité à base pentagonale. These d’état. MontpelierII, Université des sciences et techniques du Languedoc (2009)

  8. Maurin, B.; Canadas, P.; Motro, R.: Tensegrity architecture calculation of the cellular cytoskeleton. In: IASS-IAC, 6th ICCSSS, Ithaca (2008)

  9. Maurin B., Canadas P., Baudriller H., Montcourrien P., Bettache N.: Mechanical model of cytoskeleton structuration during cell adhesion and speading. J. Biomech. 41(9), 2036–2041 (2008)

    Article  Google Scholar 

  10. Pellegrino S., Calladine C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solids Struct. 22(4), 409–428 (1986)

    Article  MathSciNet  Google Scholar 

  11. Calladine C.R.: Buckminster Fuller’s tensegrity structures and Clerk Maxwell’s rules for the construction of stiff frames. Int. J. Solids Struct. 14, 161–172 (1978)

    Article  MATH  Google Scholar 

  12. Vassart, N.: Recherche de forme et stabilité des systèmes reticules autocontraints, application aux systèmes de tenségrité. These d’état. MontpelierII, Université des sciences et techniques du Languedoc (1997)

  13. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)

  14. Cook, R.D.; Malkus, D.S.; Plesha, M.E.: Concepts and Applications of Finite Element Analysis, 3rd edn. Willey, New York (1989)

  15. Leu L.J., Yang Y.B.: Effects of rigid body and stretching on nonlinear analysis of struts. J. Struct. Eng. ASCE 116(10), 2582–97 (1990)

  16. Blandford G.E.: Large deformation analysis of inelastic space strut structures. J. Struct. Eng. ASCE 122(4), 407–15 (1990)

  17. Chajes A., Churchill J.E.: Nonlinear frame analysis by finite element method. J. Struct. Eng. ASCE 113(6), 1221–1235 (1987)

    Article  Google Scholar 

  18. Mitsugi J.: Static analysis of cable networks and their supporting structures. Comput. Struct. 51, 47–56 (1994)

    Article  MATH  Google Scholar 

  19. Quirant, J.: systèmes de tenségrité et autocontrainte: qualification, sensibilité et incidence sur le comportement. Thèse d’état. MontpelierII, Université des sciences et techniques du Languedoc (2000)

  20. Sandoval, L.R.S.: Contribution à l’étude du dimensionnement optimal des systèmes de tenségrité. Thèse d’état. MontpelierII, Université des sciences et techniques du Languedoc (2005)

  21. Motro, R.; Quirant, J.; Nguyen, A.D.; Maurin, B.: Foldable tensegrity rings: from conceptual design to physical and numerical models. In: ASPC Symposium, Japan (2009)

  22. Bin-Bing W., Yan-Yun L.: From tensegrity grids to cable-strut grids. Int. J. Space Struct. 16(4), 279–314 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Khellaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khellaf, N., Kebiche, K. Geometric and Material Nonlinear Analysis of Square-Based Tensegrity Ring Structures. Arab J Sci Eng 39, 5979–5989 (2014). https://doi.org/10.1007/s13369-014-1196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1196-2

Keywords

Navigation