Skip to main content
Log in

Multiferroic Dynamics of an Electric Field-Driven Composite Ferroelectric/Ferromagnetic Chain

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Controlling magnetism with an electric field is fundamentally important and bears the potential for a wide range of applications. A promising route to circumvent this problem is the appropriately synthesized composite ferroelectric(FE)/ferromagnetic(FM) nano and multilayer structures that may serve as elements in quantitatively new multiferroic devices at room temperature. Two mechanisms, which may underlay the magnetoelectric effect in composite FE/FM junctions, interfacial charge rearrangements and strain effects, are studied as the key ingredients for the magnetoelectric coupling. We demonstrate theoretically a mutual multiferroic response and a complete magnetization switching of a thin FE/FM chain in the presence of a fast oscillating electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmid, H.: Some symmetry aspects of ferroics and single phase multiferroics*. J. Phys. Condens. Matter 20, 434201 (2008)

    Article  Google Scholar 

  2. Velev, J.P.; Jaswal, S.S.; Tsymbal, E.Y.: Multi-ferroic and magnetoelectric materials and Interfaces. Philos. Trans. R. Soc. A 369, 30693097 (2011)

    Article  Google Scholar 

  3. Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317 (1994)

    Article  Google Scholar 

  4. Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000)

  5. Vaz, C.A.F.; Hoffman, J.; Ahn, C.H.; Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010)

  6. Dzyaloshinshkii, I.E.: On the magneto-electrical effect in the Antiferromagnetics. Sov. Phys. JETP 10, 628 (1960)

    Google Scholar 

  7. Schmid, H.: On a magnetoelectric classification of materials. Int. J. Magnetism 4, 337 (1973)

    Google Scholar 

  8. Fuentes, L.: Magnetic-coupling properties in polycrystals. Textures Microstruct. 30, 167 (1998)

    Article  Google Scholar 

  9. Ramesh, R.; Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007)

  10. Rondinelli, J.M.; Stengel, M.; Spaldin, N.A.: Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nat. Nanotechnol. 3, 46 (2008)

  11. Meyerheim, H.L.; Klimenta, F.; Ernst, A.; Mohseni, K.; Ostanin, S.; Fechner, M.; Parihar, S.; Maznichenko, I.V.; Mertig, I.; Kirschner, J.: Structural secrets of multiferroic interfaces. Phys. Rev. Lett. 106, 087203 (2011)

  12. Duan, C.-G.; Jaswal, S.S.; Tsymbal, E.Y.: Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006)

  13. Sahoo, S.; Polisetty, S.; Duan, C.-G.; Jaswal, S.S.; Tsymbal, E.Y.; Binek, C.: Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys. Rev. B 76, 092108 (2007)

  14. Duan, C.-G.; Velev, J.P.; Sabirianov, R.F.; Mei, W.N.; Jaswal, S.S.; Tsymbal, E.Y.: Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl. Phys. Lett. 92, 122905 (2008)

  15. Sukhov, A.; Jia, C.-L.; Horley, P.P.; Berakdar, J.: Polarization and magnetization dynamics of a field-driven multiferroic structure. J. Phys. Condens. Matter 22, 352201 (2010)

  16. Taniyama, T.; Akasaka, K.; Fu, D.-S.; Itoh, M.: Artificially controlled magnetic domain structures in ferromagnetic dots/ferroelectric heterostructures. J. Appl. Phys. 105, 07D901 (2009)

  17. Valencia, S.; Crassous, A.; Bocher, L.; Garcia, V.; Moya, X.; Cherifi, R.O.; Deranlot, C.; Bouzehouane, K.; Fusil, S.; Zobelli, A.; Gloter, A.; Mathur, N.D.; Gaupp, A.; Abrudan, R.; Radu, F.; Barthélémy, A.; Bibes, M.: Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 10, 753 (2011)

  18. Venkataiah, G.; Shirahata, Y.; Suzuki, I.; Itoh, M.; Taniyama, T.: Strain-induced reversible and irreversible magnetization switching in Fe/BaTiO3 heterostructures. J. Appl. Phys. 111, 033921 (2012)

  19. Fechner, M.; Ostanin, S.; Mertig, I.: Magnetoelectric coupling at biferroic interface studied from first principles. J. Phys. Conf. Ser. 200, 072027 (2010)

  20. Mardana, A.; Ducharme, S.; Adenwalla, S.: Ferroelectric control of magnetic anisotropy. Nano Lett. 11, 3862 (2011)

  21. Lee, J.; Sai, Na.; Cai, T.Y.; Niu, Q.; Demkov, A.A.: Interfacial magneto-electric coupling in tricomponent superlattices. Phys. Rev. B 81, 144425 (2010)

  22. Venkataiah, G.; Shirahata, Y.; Itoh, M.; Taniyama, T.: Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3heterostructure by electric field. Appl. Phys. Lett. 99, 102506 (2011)

  23. Jia, C.-L.; Sukhov, A.; Horley, P.P.; Berakdar, J.: Piezoelectric control of the magnetic anisotropy via interface strain coupling in a composite multiferroic structure. Europhys. Lett. 99, 17004 (2012)

  24. Borisov, P.; Hochstrat, A.; Chen, X.; Kleemann, W.; Binek, C.: Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005)

  25. Laukhin, V.; Skumryev, V.; Mart’ı, X.; Hrabovsky, D.; SÁnchez, F.; Garc’ıa-Cuenca, M.V.; Ferrater, C.; Varela, M.; Lüders, U.; Bobo, J.F.; Fontcuberta, J.: Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006)

  26. Wu, S.M.; Cybart, S.A.; Yu, P.; Rossell, M.D.; Zhang, J.X.; Ramesh, R.; Dynes, R.C.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756 (2010)

  27. Sahoo, S.; Polisetty, S.; Duan, C.-G.; Jaswal, S.S.; Tsymbal, E.Y.; Binek, C.: Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys. Rev. B 76, 092108 (2007)

  28. Bruchhausen, A.; Fainstein, A.; Soukiassian, A.; Schlom, D.G.; Xı, X.X.; Bernhagen, M.; Reiche, P.; Uecker, R.: Ferroelectricity-induced coupling between light and terahertz-frequency acoustic phonons in BaTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 101(19), 197402 (2008)

  29. Ederer, G.; Spaldin, N.: Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005)

  30. Horley, P.P.; Sukhov, A.; Jia, C.-L.; Eduardo, M.; Berakdar, J.: Influence of magnetoelectric coupling on electric field induced magnetization reversal in a composite unstrained multiferroic chain. Phys. Rev. B 85, 054401 (2012)

  31. Jia, C.-L.; Sukhov, A.; Horley, P.P.; Berakdar, J.: Finite-size effects on the magneto-electric response of field-driven ferroelectric/ferromagnetic chains. J. Phys. Conf. Ser. 303, 012061 (2011)

  32. Cai, T.; Ju, S.; Lee, J.; Sai, N.; Demkov, A.A.; Niu, Q.; Li, Z.; Shi, J.; Wang, E.: Magnetoelectric coupling and electric control of magnetization in ferromagnet/ferroelectric/normal-metal superlattices. Phys. Rev. B 80, 140415(R) (2009)

  33. Devonshire, A.F.: Theory of ferroelectrics. Adv. Phys. 3 85 (1954)

  34. Marton, P.; Rychetsky, I.; Hlinka, J.: Domain walls of ferroelectric BaTiO3within the Ginzburg–Landau–Devonshire phenomenological model. Phys. Rev. B 81, 144125 (2010)

  35. Hlinka, J.; Márton, P.: Phenomenological model of a 90^ domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B 74, 104104 (2006)

  36. Chikazumi, S.M.: Physics of Ferromagnetism. Oxford University Press, New York (2002)

  37. Zhang, S.: Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys. Rev. Lett. 83, 640 (1999)

  38. Duan, C.-G.; Velev, J.P.; Sabirianov, R.F.; Zhu, Z.; Chu, J.; Jaswal, S.S.; Tsymbal, E.Y.: Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008)

  39. Martin, R.M.: Piezoelectricity. Phys. Rev. B 5, 1607 (1972)

  40. Rabe, K.; Ahn, Ch.H.; Triscone, J.-M. (eds.): Physics of Ferroelectrics: A Modern Perpective. Springer, Berlin (2007)

  41. Ricinschi, D.; Harnagea, C.; Papusoi, C.; Mitoseriu, L.; Tura, V.; Okuyama, M.: Analysis of ferroelectric switching in finite media as a Landau-type phase transition. J. Phys. Condens. Matter 10, 477 (1998)

  42. Sivasubramanian, S.; Widom, A.; Srivastava, Y.N.: Physical kinetics of ferro-electric hysteresis. Ferroelectrics 300, 43 (2004)

  43. Gilbert, T.L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443 (2004) (Phys. Rev. 100, 1243 (1955) (abstract only))

  44. Landau, L.; Lifshitz, E.: Theory of the dispersion of magnetic permeability in ferro-magnetic bodies. Phys. Z. Sowjetunion 8, 153 (1935)

  45. Hlinka, J.: Mobility of ferroelastic domain walls in barium titanate. Ferroelectrics 349, 49 (2007)

  46. Chikazumi, S.M.: Physics of Ferromagnetism. Oxford University Press, New York (2002)

  47. Coey, J.M.D.M.: Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010)

  48. Landau, D.P.; Binder, K.M.: A Guide to Monte-Carlo Simulations in Statistical Physics. Cambridge University Press, New York (2009)

  49. Potter, B.G., Jr.; Tuttle, B.A.; Tikare, V.: Monte Carlo simulation of ferroelectric domain structure and applied field response in two dimensions. J. Appl. Phys. 87, 4415 (2000)

  50. Gao, X.S.; Liu, J.-M.; Chen, X.Y.; Liu, Z.G.: Monte Carlo approach to phase transitions in ferroelectromagnets. J. Appl. Phys. 88, 4250 (2000)

  51. Hinzke, D.; Nowak, U.: Magnetization switching in a Heisenberg model for small ferromagnetic particles. Phys. Rev. B 58, 265 (1998)

  52. Serena, P.A.; Garc’ıa, N.; Levanyuk, A.: Monte Carlo calculations on the two-dimensional anisotropic Heisenberg model. Phys. Rev. B 47, 5027 (1993)

  53. Rao, M.; Krishnamurthy, H.R.; Pandit, R.: Magnetic hysteresis in two model spin systems. Phys. Rev. B 42, 856

  54. Acharyya, M.; Chakrabarti, B.K.: Response of Ising systems to oscillating and pulsed fields: hysteresis, ac, and pulse susceptibility. Phys. Rev. B 52(9), 6550

  55. Yao, X.; Lo, V.C.; Liu, J.-M.: Magnetic field controlled reversal of ferroelectric polarization in conincal spin ordered multiferroics: Monte Carlo simulation. J. Appl. Phys. 106, 073901 (2009)

  56. Mader, G.; Meixner, H.; Kleinschmidt, P.: Temperature and stress dependence of Young’s modulus in semiconducting barium titanate ceramics. J. Appl. Phys. 58, 702 (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglong Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Jia, C. Multiferroic Dynamics of an Electric Field-Driven Composite Ferroelectric/Ferromagnetic Chain. Arab J Sci Eng 39, 6665–6670 (2014). https://doi.org/10.1007/s13369-014-1186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1186-4

Keywords

Navigation