Skip to main content
Log in

Prediction of Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behavior of AA2014/B4Cp MMCs Using Artificial Neural Network

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, an artificial neural network (ANN) approach was used to predict the abrasive wear behavior of AA2014 aluminum alloy matrix composites reinforced with B4C particles. The abrasive wear properties of varying volume fraction of particles up to 12 % B4C particle reinforced AA2014MMCS produced by stir casting method were investigated using a block-on-disc wear tester. Wear tests were performed under 92 N against the abrasive suspension mixture with a novel three body abrasive. For wear behavior, the volume loss, specific wear rate and surface roughness of the composites were measured. The effect of sliding time and content of B4C particles on the abrasive wear behavior were analyzed in detail. As a result of this study, the ANN was found to be successful for predicting the volume loss, specific wear rate and surface roughness of AA2014/B4C composites. The mean absolute percentage error (MAPE) for the predicted values did not exceed 4.1 %. The results have shown that ANN is an effective technique in the prediction of the properties of MMCs, and quite useful instead of time-consuming experimental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh A., Taheri N.E.: Wear Behavior of nanostructured Al and Al–B4C nanocomposites produced by mechanical milling and hot extrusion. Tribol. Lett. 44, 59–66 (2011)

    Article  Google Scholar 

  2. Kimura Y.: Recent trends in tribology in Japan. J. Euro. Rib. 931, 1–9 (1993)

    Google Scholar 

  3. Raghumatham N., Ioannidis E.K., Sheppard T.: Fabrication, properties and structure of a high temperature light alloy composite. J. Mater. Sci. 26, 985–992 (1991)

    Google Scholar 

  4. Shibata K., Ushio H.: Tribological application of MMCs for reducing engine weight. Tribol. Int. 27, 39–41 (1994)

    Article  Google Scholar 

  5. Chellman, D.J.; Langenbeck, S.L.: Aerospace applications of advanced aluminum alloys. J. Key. Eng. Mater. 77–78, 49–60 (1993)

  6. Chawla N., Chawla K.K.: Metal matrix composites. Springer-Verlag, New York (2006)

    Google Scholar 

  7. Rohatgi, P.K.: Cast metal matrix composites, In: Metal Hand Book, vol. 15. 9th edn. ASM International, Metals Park (1988)

  8. Sannino A.P., Rack H.J.: Tribological investigation of 2009Al-20 vol% SiCp/17-4 PH, Part I: composite performance. Wear 197, 151–159 (1996)

    Article  Google Scholar 

  9. Sharma S.C.: The sliding wear behavior of Al6061–garnet particulate composites. Wear 249, 1036–1045 (2001)

    Article  Google Scholar 

  10. Jiang J.Q., Tan R.S., Ma A.B.: Dry sliding wear behaviour of Al2O3–Al composites produced by centrifugal force infiltration. Mater. Sci. Technol. 12, 483–488 (1996)

    Article  Google Scholar 

  11. How H.C., Baker T.N.: Characterisation of sliding frictioninduced subsurface deformation of Saffil-reinforced AA6061 composites. Wear 232, 106–115 (1999)

    Article  Google Scholar 

  12. Canakci A.: Microstructure and abrasive wear behavior of B4C particle reinforced 2014 Al matrix composites. J. Mater. Sci. 46, 2805–2813 (2011)

    Article  Google Scholar 

  13. Ramesh C.S., Keshavamurthy R., Channabasappa B.H., Pramod S.: Friction and wear behavior of Ni–P coated Si3N4 reinforced Al6061composites. Trib. Int. 43, 623–634 (2010)

    Article  Google Scholar 

  14. Ipek, R.: Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites (Al/B4C–Al/SiC). J. Mater Process. Technol. 162–163, 71–75 (2005)

  15. Rosenberger M.R., Schvezov C.E., Forlerer E.: Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer. Wear 259, 590–601 (2005)

    Article  Google Scholar 

  16. Hemanth J.: Tribological behavior of cryogenically treated B4Cp/Al–12 % Si composites. Wear 258, 1732–1744 (2005)

    Article  Google Scholar 

  17. Kaczmar J.W., Pietrzak K., Wlosinski W.: The production and application of metal matrix composite materials. J. Mater. Process. Technol. 106, 58–67 (2000)

    Article  Google Scholar 

  18. Mohanty R.M., Balasubramanian K., Seshadri S.K.: Boron carbide-reinforced aluminum 1100 matrix composites: fabrication and properties. Mater. Sci. Eng. A 498, 42–52 (2008)

    Article  Google Scholar 

  19. Topcu I., Gulsoy H.O., Kadioglu N., Gulluoglu A.N.: Processing and mechanical properties of B4C reinforced Al matrix composites. J. Alloys. Comp. 482, 516–521 (2009)

    Article  Google Scholar 

  20. Gyurova L.A., Friedrich K.: Artificial neural Networks for predicting sliding friction and wear properties of polyphenylene sulfide composites. Trib. Int. 44, 603–609 (2011)

    Article  Google Scholar 

  21. Mahamood A.H., Alrashdan A., Hayajneh M.T., Mayyas A.T.: Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network. J. Mater. Process. Technol. 209, 894–899 (2009)

    Article  Google Scholar 

  22. Ozerdem M.S., Kolukisa S.: Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys. Mater. Des. 30, 764–769 (2009)

    Article  Google Scholar 

  23. Muthukrishnana N., Davim J.P.: Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J. Mater. Process. Technol. 209, 225–232 (2009)

    Article  Google Scholar 

  24. Genel K., Kurnaz S.C., Durman M.: Modeling of tribological properties of alumina fiber reinforced zinc–aluminium composites using artificial neural network. Mater. Sci. Eng. A 363, 203–210 (2003)

    Article  Google Scholar 

  25. Dashtbayazi M.R., Shokuhfar A., Simchi A.: Artificial neural network modeling of mechanical alloying process for synthesizing of metal matrix nanocomposite powders. Mater. Sci. Eng. A 466, 274–283 (2007)

    Article  Google Scholar 

  26. Malinov S., Sha W.: Software products for modelling and simulation in materials science. Comput. Mater. Sci. 28, 179–198 (2003)

    Article  Google Scholar 

  27. Canakci A., Arslan F., Yasar I.: Pre-treatment process of B4C particles to improve incorporation into molten AA2014 alloy. J. Mater. Sci. 42, 9536–9542 (2007)

    Article  Google Scholar 

  28. Lee J.A., Almond D.P., Harris B.: The use of neural networks for the prediction of fatigue lives of composite materials. Compos. Part A 30, 1159–1169 (1999)

    Article  Google Scholar 

  29. Karayel D.: Prediction and control of surface roughness in CNC lathe using artificial neural network. J. Mater. Process. Technol. 209, 3125–3137 (2009)

    Article  Google Scholar 

  30. Senatore A., Agostino V.D., Giuda R.D., Petrone V.: Experimental investigation and neural network prediction of brakes and clutch material frictional behavior considering the sliding acceleration influence. Trib. Int. 44, 1199–1207 (2011)

    Article  Google Scholar 

  31. Ma J., Zhu S.G., Wu C.X., Zhang M.L.: Application of back-propagation neural network technique to high-energy planetary ball milling process for synthesizing nanocomposite WC–MgO powders. Mater. Des. 30, 2867–2874 (2009)

    Article  Google Scholar 

  32. Gyurova L.A., Justel P.M., Schlarb A.K.: Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks. Wear 268, 708–714 (2010)

    Article  Google Scholar 

  33. Sag\({\imath}\) roglu, S.; Besdok, E.; Erler, M.: Artificial intelligence applications in engineering-1: Artificial neural networks, Ufuk Books Stationery, Kayseri (2003)

  34. Kök M.: Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminum alloy composites. J. Mater. Process. Technol. 161, 381–387 (2005)

    Article  Google Scholar 

  35. Kök M.: Abrasive wear of Al2O3 particle reinforced 2024 aluminum alloy composites fabricated by vortex method. Compos. A 37, 457–464 (2006)

    Article  Google Scholar 

  36. Akhlaghi, F.; Lajervardi, A.; Maghanaki, H. M.: Effects of casting temperature on the microstructure and wear resistance of compocast A356/SiCp composites: a comparison between SS and SL routes. J. Mater. Process. Technol. 155-156, 1874–1880 (2004)

  37. Suresh K.R., Niranjan H.B., Jebaraj P.M., Chowdiah M.P.: Tensile and wear properties of aluminum composites. Wear 255, 38–642 (2003)

    Article  Google Scholar 

  38. Das S., Das S., Das K.: Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt% Cu alloy matrix composites: a comparative study. Comp. Sci. Technol. 67, 746–751 (2007)

    Article  Google Scholar 

  39. Acilar M., Gul F.: Effect of the applied load, sliding distance and oxidation on the dry sliding wear behaviour of Al–10Si/SiCp composites produced by vacuum infiltration technique. Mater. Des. 25, 209–217 (2004)

    Article  Google Scholar 

  40. Axen N., Jacobson S.: Transitions in the abrasive wear resistance of fibre and particle reinforced aluminum. Wear 178, 1–7 (1994)

    Article  Google Scholar 

  41. Lee H.L., Lu W.H., Chan S.L.: Abrasive wear of powder metallurgy Al alloy 6061-SiC particle composites. Wear 159, 223–231 (1992)

    Article  Google Scholar 

  42. Yilmaz S., Bultoz O.: Abrasive wear of Al2O3-reinforced aluminum-based MMCs. Compos. Sci. Technol. 61, 2381–2392 (2001)

    Article  Google Scholar 

  43. Prasad B.K., Jha A.K., Modi O.P., Das S., Yegneswaran A.H.: Abrasive wear characteristics of Zn-37.2Al-2.5Cu-0.2Mg alloy dispersed with silicon carbide particles. Mater. Trans. 36, 1048–1057 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aykut Canakci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canakci, A., Ozsahin, S. & Varol, T. Prediction of Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behavior of AA2014/B4Cp MMCs Using Artificial Neural Network. Arab J Sci Eng 39, 6351–6361 (2014). https://doi.org/10.1007/s13369-014-1157-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1157-9

Keywords

Navigation