Arabian Journal for Science and Engineering

, Volume 39, Issue 6, pp 4333–4339 | Cite as

Effect of Sodium Silicate to Sodium Hydroxide Ratios on Strength and Microstructure of Fly Ash Geopolymer Binder

  • M. S. Morsy
  • S. H. Alsayed
  • Y. Al-Salloum
  • T. Almusallam
Research Article - Chemical Engineering

Abstract

Geopolymerization can transform a wide range of waste aluminosilicate materials into building and mining materials with excellent chemical and physical properties. The present experimental study investigates the effect of sodium silicate/sodium hydroxide ratios on the feasibility of geopolymer synthesis at 80 °C using fly ash. The sodium silicate/sodium hydroxide (S/N) ratios 0.5, 1.0, 1.5, 2.0 and 2.5 were studied. The result showed that the compressive and flexural strength increases as the curing age increases. Also, the compressive strength increases as the sodium silicate/sodium hydroxide ratio increases from 0.5 to 1.0 and then decreases. Morphology studies, conducted by SEM analysis of the geopolymer samples, indicated that geopolymers gel had the fly ash particles and pores embedded in a continuous matrix. At S/N = 1 a homogeneous and less porous microstructure was observed.

Keywords

Geopolymer Microstructure Compressive strength Flexural strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kong D.L.Y., Sanjayan J.G.: Damage behavior of geopolymer composites exposed to elevated temperature. Cem. Conc. Compos. 30, 986–991 (2008)CrossRefGoogle Scholar
  2. 2.
    Davidovits, J.: High alkali cements for 21st Century concretes. Concrete technology, past, present, and future, SP-144. In: Mehta, K. (ed.), American Concrete Institute, Detroit, pp. 383–397 (1994a)Google Scholar
  3. 3.
    Davidovits, J.: Properties of geopolymer cement. In: Škvára, F. (ed.) Proceedings of 1st International Conference on Alkaline Cements and Concretes, Scientific Research Institute on Binders and Materials, Kiev State Technical University, Kiev, pp. 131–149 (1994b)Google Scholar
  4. 4.
    Lyon R.E., Foden A., Balaguru P.N., Davidovits M., Davidovits J.: Fire-resistant aluminosilicate composites. Fire Mater. 21, 67–73 (1997)CrossRefGoogle Scholar
  5. 5.
    Li Z., Zhang Y., Zhou X.: Short fiber reinforced geopolymer composites manufactured by extrusion. J. Materi. Civil Eng. 17, 624–631 (2005)CrossRefGoogle Scholar
  6. 6.
    Xu H., Van Deventer J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process 59, 247–266 (2000)CrossRefGoogle Scholar
  7. 7.
    De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V.: Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem. Conc. Res. 37, 512–518 (2007)Google Scholar
  8. 8.
    Phair J.W., Van Deventer J.S.J.: Effect of silicate activator pH on the leaching and material characteristics of wast-baste-based inorganic polymers. Miner. Eng. 14, 289 (2001)CrossRefGoogle Scholar
  9. 9.
    Mohsen Q., Mostafa N.Y.: Investigating the possibility of utilizing low kaolinitic clays in production of geopolymer bricks. Ceramics Silikáty 54, 160–168 (2010)Google Scholar
  10. 10.
    Palomo A., Grutzec M.W., Blanco M.T.: Alkali-activated fly ashes A cement for the future. Cem. Conc. Res. 29, 1323–1329 (1999)CrossRefGoogle Scholar
  11. 11.
    Provis J.L., Lukey G.C., Van Deventer J.S.J.: Do geopolymers activity contain nanocrystalline zeolites. Chem. Mater. 17, 3075–3085 (2005)CrossRefGoogle Scholar
  12. 12.
    Davidovits J., Comrie D.C., Paterson J.H., Ritcey D.J.: Geopolymeric concretes for environmental protection. Conc. Int. 12, 30–40 (1990)Google Scholar
  13. 13.
    Xu H., Jannie S., Van Deventer J.S.J.: Geopolymerisation of multiple minerals. Miner. Eng. 15, 1131–1139 (2002)CrossRefGoogle Scholar
  14. 14.
    Phair J.W., Van Deventer J.S.J.: Effect of silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process 66, 121–143 (2002)CrossRefGoogle Scholar
  15. 15.
    Komnitsas, K.; Zaharaki, D.; Perdikatsis, V.: Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 42, 3073 (2007)Google Scholar
  16. 16.
    Skvara F., Kopecky L., Nimeeek J., Bittnar Z.: Microstructure of geopolymer materials based on fly ash. Ceramics Silikaty 50, 208–215 (2006)Google Scholar
  17. 17.
    Hardjito D., Cheak C.C., Lee I.C.H.: Strength and setting time of low calcium fly ash-based geopolymer mortar. Mod. Appl. Sci. 2, 3–11 (2008)CrossRefGoogle Scholar
  18. 18.
    Jaarsveld J.G.S.V., Deventer J.S.J.V., Lukey G.C.: The effect of composition and temperature on the properties of fly-ash and kaolinite-based geopolymers. Chem. Eng. J. 89, 63–73 (2002)CrossRefGoogle Scholar
  19. 19.
    Davidovits, J.: Geopolymer chemistry and applications. 2nd ed. Institute Geopolymere, Saint Quentin (2008)Google Scholar
  20. 20.
    Alonso S., Palomo A.: Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem. Conc. Res. 31, 25–30 (2001)CrossRefGoogle Scholar
  21. 21.
    Rattanasak U., Chindaprasirt P.: Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22, 1073–1078 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2014

Authors and Affiliations

  • M. S. Morsy
    • 1
  • S. H. Alsayed
    • 1
  • Y. Al-Salloum
    • 1
  • T. Almusallam
    • 1
  1. 1.Department of Civil Engineering, Specialty Units for Safety and Preservation of StructuresKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations