Skip to main content
Log in

Prediction of Flow and Oxygen Transfer by a Plunging Water Jets with Genetic Expression Programming (GEP) Models

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A plunging water jet passing through the surrounding air entrains a large amount of air bubbles into a pool and forms a large submerged two-phase (gas–liquid) contacting area. This process is called air entrainment or aeration by a plunging water jets. In this study, the flow characteristics such as volumetric air entrainment rate, bubble penetration depth and oxygen transfer efficiency are evaluated based on five major parameters which describe air entrainment at the plunge point: the nozzle diameter, jet length, jet velocity, nozzle length-to-diameter ratio and jet impact angle. This paper presents gene expression programming (GEP) model, which is an extension to genetic programming, as an alternative approach to modeling of the flow characteristics such as the bubble penetration depth, air entrainment rate and oxygen transfer efficiency by plunging water jets. New formulations for prediction of the flow characteristics in the plunging water jet system are developed using GEP and regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCarty, M.J.; Molloy, N.A.: Review of stability of liquid jets and the influence of nozzle design. Chem. Eng. Sci. 7, 1–20 (1974)

    Google Scholar 

  2. Van de Sande, E.; Smith, J.M.: Strahlen mit geringer geschwindigkeit. Chem. Ing. Tech. 44, 1177–1183(1972)

    Article  Google Scholar 

  3. Van de Sande, E.; Smith, J.M.: Surface entrainment of air by high velocity water jets. Chem. Eng. Sci. 28, 1161-1168 (1973)

    Article  Google Scholar 

  4. Van de Sande, E.; Smith, J.M.: Mass transfer from plunging water jets. Chem. Eng. J. 10, 225–233 (1975)

    Article  Google Scholar 

  5. Van de Sande, E.; Smith, J.M.: Jet break up and air entrainment by low velocity turbulent water jets. Chem. Eng. Sci. 31, 219-224 (1976)

    Google Scholar 

  6. Jennekens, H.: Waterstrall beluchting voor biologische waterzuivering sinstallaties. H2O, 8, 479–482 (1975)

  7. Jennekens, H.: Water jet technique combines aeration and mixing. Water Sew. Works 71–73 (1979)

  8. Avery, S.T.; Novak, P.: Oxygen transfer at hydraulic structures. J. Hydraul. Div. Proc. ASCE 104, 1521-1540 (1978)

    Google Scholar 

  9. Djkstra, F.; Jennekens, H.; Nooren, P.: The development and application of water jet aeration for wastewater treatment. Prog. Water Technol. 11, 181 (1979)

    Google Scholar 

  10. McKeogh, E.J.; Elsawy, E.M.: Air retained in pool by plunging water jet. J. Hydraul. Div. ASCE 106, 1577-1593 (1980)

    Google Scholar 

  11. McKeogh, E.J.; Ervine, D.A.: Air entrainment rate and diffusion pattern of plunging liquid jets. Chem. Eng. Sci. 36, 1161–1172 (1981)

    Google Scholar 

  12. Tojo, K.; Miyanami, K.: Oxygen transfer in jet mixers. Chem. Eng. J. 24, 89-97 (1982)

    Google Scholar 

  13. Tojo, K.; Naruko, M.; Miyanami, K.: Oxygen transfer and liquid mixing characterizes of plunging jet reactors. Chem. Eng. J. 25, 107–109 (1982)

    Google Scholar 

  14. Ohkawa, A.; Kusabiraki, D.; Kawai, Y.; Sakai, N.: Some flow characteristics of a vertical liquid jet system having downcomers. Chem. Eng. Sci. 41(9), 2347-2361 (1986a)

  15. Ohkawa, A.; Kusabiraki, D.; Shiokawa, Y.; Sakai, N.; Fujii M.: Flow and oxygen transfer in a plunging water system using inclined short nozzles and performance characteristics of its system in aerobic treatment of wastewater. Biotechnol. Bioeng. 28, 1845–1856 (1986b)

  16. Nakasone, H.: Study of aeration at weirs and cascades. J. Environ. Eng. 113, 64–81 (1987)

    Article  Google Scholar 

  17. Sene, K.J.: Air entrainment by plunging jets. Chem. Eng. Sci. 43, 2615–2623 (1988)

    Google Scholar 

  18. Detsch, R.M.; Sharma, R.N.: The critical angle for gas bubble entrainment by plunging liquid jets. Chem. Eng. J. 44, 157–166 (1990)

    Google Scholar 

  19. Bin, A.K.: Gas entrainment by plunging liquid jets. Chem. Eng. Sci. 48, 3585–3630 (1993)

    Google Scholar 

  20. Evans, G.M.; Jameson, G.J.; Rielly, C.D.: Free jet expansion and gas entrainment characteristics of a plunging liquid jet. Exp. Therm. Fluid Sci. 12, 142–149 (1996)

    Google Scholar 

  21. Cummings, P.D.; Chanson H.: Air entrainment in the developing flow region of plunging Jets-Part 1: experimental. J. Fluids Eng. 119, 603–608 (1997)

    Google Scholar 

  22. Bagatur, T.; Baylar, A.; Sekerdag, N.: The effect of nozzle type on air-entrainment by plunging water jets. Water Qual. Res. Can. 37(3), 599–612 (2002)

    Google Scholar 

  23. Bagatur, T.; Sekerdag, N.:Air entrainment characteristics in a plunging water jet system using rectangular nozzles with rounded ends. Water SA 29(1), 35–38 (2003)

    Google Scholar 

  24. Baylar, A.; Emiroglu, M.E.: Air entrainment and oxygen transfer in a venturi. Proc. Inst. Civil Eng. Water Maritime Eng. 156(WM3), 249–255 (2003)

    Google Scholar 

  25. Emiroglu, M.E.; Baylar, A.: Role of nozzles with air holes in air entrainment by a water jet. Water Qual. Res. J. Can. 38(4), 785–795 (2003)

    Google Scholar 

  26. Chanson, H.; Aoki, S.; Hoque, A.: Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets. Chem. Eng. Sci. 59(4), 747–754 (2004)

    Google Scholar 

  27. Ferreira, C.: Gene expression programming: A new adaptive algorithm for solving problems. Complex Syst. 13(2), 87–129 (2001)

    MATH  Google Scholar 

  28. Guven, A.; Gunal, M.: Genetic programming approach for prediction of local scour downstream hydraulic structures. J. Irrig. Drain Eng. 134(2), 241–249 (2008)

    Google Scholar 

  29. Guven, A.; Aytek, A.: A new approach for stage–discharge relationship: Gene-expression programming. J. Hydrol. Eng. 14(8), 812–820 (2009)

    Article  Google Scholar 

  30. Eldrandaly, K.: Integrating gene expression programming and geographic information systems for solving a multi site land use allocation problem. Am. J. Appl. Sci. 6(5), 1021–1027 (2009)

    Google Scholar 

  31. Guven, A.; Kisi, O.: Estimation of suspended yield in natural rivers using machine-coded linear genetic programming. Water Resour. Manag. 25(2), 691–704 (2011)

    Google Scholar 

  32. Azamathulla, H.M.; Ghani, A.A.; Leow, C.S.; Chang C.K.: Gene-expression programming for the development of a stage–discharge curve of the Pahang River. Water Resour. Manage. 25, 2901–2916 (2011)

    Google Scholar 

  33. Baylar, A.; Unsal, M.; Ozkan, F.: GEP Modeling of oxygen transfer efficiency prediction in aeration cascades. KSCE J. Civil Eng. 15(5), 799–804 (2011)

    Google Scholar 

  34. Kayadelen, C.: Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert Syst. Appl. 38(4), 4080–4087 (2011)

    Article  Google Scholar 

  35. Azamathulla, H.M.: Gene-expression programming to predict scour at a bridge abutment. J. Hydroinf. 14(2), 324–331 (2012)

    Article  Google Scholar 

  36. Guven, A.; Azamathulla, H.M.: Gene-expression programming for flip-bucket spillway scour. Water Sci. Technol. 65(4), 1982–1987 (2012)

    Article  Google Scholar 

  37. Ferreira, C.: Gene expression programming and the evolution of computer programs. In: de Castro, L.N.; Zuben, F.J. (eds.) Recent Developments in Biologically Inspired Computing, pp. 82–103. Idea Group Publishing, Hershey, PA (2004)

  38. Ferreira, C.: Gene-Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer, Berlin (2006)

    Google Scholar 

  39. Teodorescu, L.; Sherwood, D.: High energy physics event selection with gene expression programming. Comput. Phys. Commun. 178(6):409–419 (2008)

    Article  Google Scholar 

  40. Kayadelen, C.; Gunaydin, O.; Fener, M.; Demir, A.; Ozvan A.: Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Syst. Appl. 36(9), 11814–11826 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Bagatur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagatur, T., Onen, F. Prediction of Flow and Oxygen Transfer by a Plunging Water Jets with Genetic Expression Programming (GEP) Models. Arab J Sci Eng 39, 4421–4432 (2014). https://doi.org/10.1007/s13369-014-1092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1092-9

Keywords

Navigation