Skip to main content

Advertisement

Log in

Swarm-Inspired Artificial Bee Colony Algorithm for Solving Optimal Power Flow with Wind Farm

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an enhanced artificial bee colony (ABC)-based algorithm is proposed for solving optimal power flow (OPF) with wind farm. The OPF calculations determine optimal values of control variables and system quantities for secure and economic system operation considering various limitations with wind farm. In the OPF problem, wind farm is modeled as an aggregate permanent magnet synchronous generator and subsequently modeled as an aggregate squirrel cage induction generator. The proposed algorithm is developed by the combined application of Gaussian and Cauchy probability distributions in ABC algorithm and hence termed as swarm-inspired artificial bee colony (SIABC) algorithm. The performance of the proposed SIABC algorithm is compared with particle swarm optimization (PSO) and ABC algorithms. The optimal solutions for adopted IEEE 30-bus system with wind farm and adopted Indian Utility 66-bus system obtained by these algorithms are compared and analyzed. The analysis reveals that the proposed SIABC algorithm is relatively simple, reliable and faster in convergence than PSO and ABC algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F T :

Total fuel cost ($/h)

a Gi ,b Gi ,c Gi :

Fuel cost coefficients of ith committed thermal generator

a Gs ,b Gs ,c Gs :

Fuel cost coefficients of slack bus generator

P Gi :

Active power generation of ith committed thermal generator

P Gs :

Active power generation of slack bus generator

\({P_{\rm Gi}^{\min} ,P_{\rm Gi}^{\max} }\) :

Active power generation limits of ith committed thermal generator

\({Q_{\rm Gi}^{\min} ,Q_{\rm Gi}^{\max} }\) :

Reactive power generation limits of ith committed thermal generator

\({P_{\rm Gs}^{\min} ,P_{\rm Gs}^{\max} }\) :

Active power generation limits of slack bus generator

\({Q_{\rm Gs}^{\min} ,Q_{\rm Gs}^{\max} }\) :

Reactive power generation limits of slack bus generator

V Ci :

Voltage magnitude of ith voltage controllable bus

nvcb:

Number of voltage controllable buses

\({V_{\rm Ci}^{\min} ,V_{\rm Ci}^{\max} }\) :

Voltage magnitude limits of ith voltage controllable bus

V Lj :

Voltage magnitude of jth load bus

\({V_{\rm Lj}^{\min} ,V_{\rm Lj}^{\max} }\) :

Voltage magnitude limits of jth load bus

nlb:

Number of load buses

\({P_{\rm Ri} =P_{\rm Gi}^{\max} -P_{\rm Gi} }\) :

Available reserve of ith committed thermal generator

\({P_{\rm Rs} =P_{\rm Gs}^{\max} -P_{\rm Gs} }\) :

Available reserve of slack bus generator

P Wi :

Active power generation of ith wind farm

χ :

Reserve requirement expressed as fraction of total load (generally 10 %)

P D :

Total system load

\({{\rm LF}_k ;{\rm LF}_k^{\max} }\) :

Power flow in the kth line and its corresponding limit (p.u MVA)

nl:

Number of transmission lines

rand(0,1):

Uniformly distributed random number between (0, 1)

Nrand(0,1):

Gaussian distributed random number with μ = 0 and σ = 1

Crand(0,1):

Cauchy distributed random number with L =  0 and S =  1

References

  1. Kaldellis, J.K.; Kavadias, K.A.; Filios, A.E.: A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems. Appl. Energy, 86(7-8), 1011–1023 (2009)

    Google Scholar 

  2. Chang, T.P.: Estimation of wind energy potential using different probability density functions. Appl. Energy 88(5) 1848–1856, (2011)

    Article  Google Scholar 

  3. Dommel, H.W.; Tinney, W.F.: Optimal power flow solutions. IEEE Trans. Power Apparatus Syst. 87(10), 1866–1876 (1968)

    Article  Google Scholar 

  4. Alsac, O.; Stott, B.: Optimal load flow with steady-state security. IEEE Trans. Power Apparatus Syst. 93(3), 745–751 (1974)

    Article  Google Scholar 

  5. Capitanescu, F.; Glavic, M.; Ernst, D.; Louis W.: Interior-point based algorithms for the solution of optimal power flow problems. Electr. Power Syst. Res. 77(5-6), 508–517 (2007)

    Google Scholar 

  6. Somasundaram, P.; Kuppusamy, K.; Kumudini Devi, R.P.: Evolutionary programming based security constrained optimal power flow. Electr. Power Syst. Res. 72(2), 137–145 (2004)

    Article  Google Scholar 

  7. Abido, M.A.; Al-Ali, N.A.: Multi-objective optimal power flow using differential evolution. Arab. J. Sci. Eng. 37(4), 991–1005 (2012)

    Article  Google Scholar 

  8. Prasanna, T.S.; Devesh Raj, M.; Somasundaram, P.: DC-OPF of interconnected power system using fuzzified evolutionary algorithms. Iran. J. Electr. Comput. Eng. 8(2), 126–132 (2009)

    Google Scholar 

  9. Silas Stephen, D.; Somasundaram, P.: Solution for multi-objective reactive power optimization using fuzzy guided tabu search. Arab. J. Sci. Eng. 37(8), 2231–2241 (2012)

    Google Scholar 

  10. Vlachogiannis, J.G.; Lee, K.Y.: A comparative study on particle swarm optimization for steady state performance of power systems. IEEE Trans. Power Syst. 21(4), 1718–1728 (2006)

    Article  Google Scholar 

  11. AlRashidi, M.R.; El-Hawary, M.E.: Hybrid particle swarm approach for solving the discrete OPF problem considering the valve loading effects. IEEE Trans. Power Syst. 10(4), 2030–2038 (2007)

    Google Scholar 

  12. Marcela, M.R.; Andreas, S.; Oriol, G.B.; Antoni, S.A.: Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search. Appl. Energy 88(12), 4678–4686 (2011)

    Google Scholar 

  13. Siahkali, H.; Vakilian, M.: Electricity generation scheduling with large-scale wind farms using particle swarm optimization. Electr. Power Syst. Res. 79(5), 826–836 (2009)

    Article  Google Scholar 

  14. dos Santos Coelho, L.; Krohling, R.A.: Predictive controller tuning using modified particle swarm optimization based on Cauchy and Gaussian distributions. Soft Comput. Methodol. Appl. Adv. Soft Comput. 32, 287–298 (2005)

    Google Scholar 

  15. Herrera, B.M.; Ribas, L.; dos Santos Coelho, L.: Nonlinear identification method of a Yo-yo system using fuzzy model and fast particle swarm optimisation. Appl. Soft Comput. Technol. Challenge Complex. Adv. Soft Comput. 34, 303–314 (2006)

    Google Scholar 

  16. Khorasani, J.: A new heuristic approach for unit commitment problem using particle swarm optimization. Arab. J. Sci. Eng. 37(4), 1033–1042 (2012)

    Article  MathSciNet  Google Scholar 

  17. Jeya Mala, D.; Mohan, V.; Kamalapriya, M.: Automated software test optimization framework: an artificial bee colony optimization, based approach. IET Softw. 4(5), 334–348 (2010)

    Article  Google Scholar 

  18. Wang, Y.; Chen, W.; Tellambura, C.: A PAPR reduction method based on artificial bee colony algorithm for OFDM signals. IEEE Trans. Wirel. Commun. 9(10), 2994–2999 (2010)

    Article  Google Scholar 

  19. Karaboga, D.; Akay, B.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Abu-Mouti, F.S.; El-Hawary, M.E.: Optimal distributed generation allocation and sizing in distribution ystems via artificial bee colony algorithm. IEEE Trans. Power Delivery 26(4), 2090–2101 (2011)

    Article  Google Scholar 

  21. Chandrasekaran, K.; Simon, S.P.: Multi-objective unit commitment problem with reliability function using fuzzified binary real coded artificial bee colony algorithm. IET Gener. Transm. Distrib. 6(10), 1060–1073 (2012)

    Article  Google Scholar 

  22. Basu, M.: Bee colony optimization for combined heat and power economic dispatch. Expert Syst. Appl. 38, 13527–13531 (2011)

    Google Scholar 

  23. Basu, M.: Hybridization of bee colony optimization and sequential quadratic programming for dynamic economic dispatch. Electr. Power Energy Syst. 44, 591–596 (2013)

    Article  Google Scholar 

  24. Malakar, T.; Goswami, S.K.: Active and reactive dispatch with minimum control movements. Int. J. Electr. Power Energy Syst. 44, 78–87 (2013)

    Article  Google Scholar 

  25. Khorsandi, A.; Hosseiniana, S.H.; Ghazanfari, A.: Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem. Electr. Power Syst. Res. 95, 206–213 (2013)

    Article  Google Scholar 

  26. Gope, S.; Datta, S.: Artificial bee colony algorithm based dynamic optimal power flow of the power system including wind farm and pumped storage hydro unit. Int. J. Electr. Eng. 5(2), 173–184 (2012)

    Google Scholar 

  27. Feijoo, A.E.; Cidras, J.: Modelling of wind farms in load flow analysis. IEEE Trans. Power Syst. 15(1), 110–115 (2000)

    Article  Google Scholar 

  28. Divya, K.C.; Nagendra Rao, P.S.: Models of wind turbine generating systems and their application in load flow studies. Electr. Power Syst. Res. 76(9–10), 844–856 (2006)

    Article  Google Scholar 

  29. Lubosny, Z.: Wind Turbine Operation in Electric Power systems. Springer Verlog publication, Berlin, Heidelberg (2003)

  30. Senthil Kumar, V.; Mohan, M.R.: A genetic algorithm solution to the optimal short-term hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 33, 827–835 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Devesh Raj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, M.D., Muthuselvan, N.B. & Somasundaram, P. Swarm-Inspired Artificial Bee Colony Algorithm for Solving Optimal Power Flow with Wind Farm. Arab J Sci Eng 39, 4775–4787 (2014). https://doi.org/10.1007/s13369-014-1084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1084-9

Keywords

Navigation