Skip to main content
Log in

Conjugate Heat Transfer for Mixed Convection and Maxwell Fluid on a Stagnation Point

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A steady two-dimensional conjugate heat transfer with Ohmic dissipation mixed convection of an incompressible Maxwell fluid on a stagnation point has been studied. The whole system is an extrusion forming process. The governing equations have been solved by similarity transformation method and finite-difference method. The above two methods have been used to analyze present problem which is a different way to analysis the similar problems. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values f′′(0) and θ′(0) for calculating the heat transfer of the similar boundary layer flow had been carried out as function of the viscoelastic number, Prandtl number, buoyancy parameters, etc. The effects of those parameters have been discussed in detail. The results have been shown that it should produce greater heat transfer effect with larger values of free convection parameter, Prandtl number and conduction–convection number. On the other hand, the magnetic parameter or Eckert number will reduce the heat transfer effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartnett J.P.: Viscoelastic fluids: a new challenge in heat transfer. J. Heat Transf. Trans. ASME. 114(2), 296–303 (1992)

    Article  Google Scholar 

  2. Srivatsava A.C.: The flow of a non-Newtonian liquid near a stagnation point. Z. Angew. Math. Phys. 9(1), 80–84 (1958)

    Article  Google Scholar 

  3. Rajeswari G., Rathna S.L: Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic fluids near a stagnation point. Z. Angew. Math. Phys. 13(1), 43–57 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Mishra S.P., Panda T.C.: Effect of injection on the flow of second order fluid in the inlet region of a channel. Acta Mech. 32(1–3), 11–17 (1979)

    Article  MATH  Google Scholar 

  5. Rajagopal K.R., Gupta A.S., Na T.Y.: A note on the Falkner–Skan flows of a non-Newtonian fluid. Int. J. Non linear Mech. 18, 313–320 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hsiao, K.-L.: Multimedia feature for unsteady fluid flow over a non-uniform heat source stretching sheet with magnetic radiation physical effects. Appl. Math. Inf. Sci. 6(1S), 59S–65S (2012)

    Google Scholar 

  7. Hsiao K.-L.: Unsteady mixed convection viscoelastic flow and heat transfer in a thin film flow over a porous stretching sheet with internal heat generation. Int. J. Phys. Sci. 6(22), 5080–5090 (2011)

    Google Scholar 

  8. Rajagopal, K.R.: Boundary layers in non-linear fluids. In: Trends in Applications of Mathematics to Mechanics (Lisbon, 1994), Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 77, pp. 209–218. Longman, Harlow, UK (1995)

  9. Vajravelu K., Soewono E.: Fourth order non-linear systems arising in combined free and forced convection flow of a second order fluid. Int. J. Non Linear Mech. 29(6), 861–869 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garg V.K., Rajagopal K.R.: Stagnation point flow of a non-Newtonian fluid. Mech. Res. Commun. 17(6), 415–421 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tzirtzilakis E.E., Kafoussias N.G.: Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet. J. Heat Transf. Trans. ASME. 132, 011702 (2010)

    Article  Google Scholar 

  12. Hayat T., Hussain M., Nadeem S., Mesloub S.: Falkner–Skan wedge flow of a power-law fluid with mixed convection and porous medium. Comput. Fluids, 49(1), 22–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hayat T., Iqba Z.L., Mustafa M., Obaidat S.: Flow and heat transfer of Jeffery fluid over a continuously moving surface with a parallel free stream. J. Heat. Transf. Trans. ASME. 134, 011701 (2012)

    Article  Google Scholar 

  14. Hayat T., Mustafa M., Pop I.: Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid, Commun. Nonlinear. Sci. Numer. Simulat. 15, 1183–1196 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cortell R.: Suction viscous dissipation and thermal radiation effects on the flow and heat transfer of a power-law fluid past an infinite porous plate. Chem. Eng. Res. Des. 89, 85–93 (2011)

    Article  Google Scholar 

  16. Ariel P.D.: On extra boundary condition in the stagnation point flow of a second grade fluid. Int. J. Eng. Sci. 40, 145–162 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mahapatra T.R., Gupta A.S.: Stagnation point flow of a viscoelastic fluid towards a stretching surface. Int. J. Non Linear Mech. 39, 811–820 (2004)

    Article  MATH  Google Scholar 

  18. Chen C.-K., Yang Y.-T., Chang K.-H.: Forced convection along the wavy surface. J. Heat Transf. Trans. ASME. 133, 104503 (2004)

    Article  Google Scholar 

  19. Serdar B., Dokuz M.S.: Three-dimensional stagnation point flow of a second grade fluid towards a moving plate. Int. J. Eng. Sci. 44(1–2), 49–58 (2006)

    Google Scholar 

  20. Mahapatra R.T., Gupta A.S.: Stagnation-point flow of a viscoelastic fluid towards a stretching surface. Int. J. Non Linear Mech. 39(5), 811–820 (2004)

    Article  MATH  Google Scholar 

  21. Paullet J., Weidman P.: Analysis of stagnation point flow toward a stretching sheet. Int. J. Non Linear Mech. 42(9), 1084–1091 (2007)

    Article  MATH  Google Scholar 

  22. Hsiao, K.-L.: Viscoelastic fluid over a stretching sheet with electromagnetic effects and non-uniform heat source/sink. Math. Probl. Eng. 2010 (2010)

  23. Hsiao K.-L.: Heat and mass transfer for micropolar flow with radiation effect past a nonlinearly stretching sheet. Heat Mass Transf. 46(4), 413–419 (2010)

    Article  Google Scholar 

  24. Hsiao, K.-L.; Hsu C.: Conjugate heat transfer of mixed convection for viscoelastic fluid past a horizontal flat-plate fin. Appl. Therm. Eng. 29/1, 28–36 (2009)

    Google Scholar 

  25. Abel M., Sanjayanand E., Mahantesh M.N.: Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and Ohmic dissipations. Commun. Nonlinear Sci. Num. Simul. 13, 1808–1821 (2008)

    Article  MATH  Google Scholar 

  26. Hsiao K.-L.: Heat and mass mixed convection for MHD viscoelastic fluid past a stretching sheet with Ohmic dissipation. Commun. Nonlinear Sci. Numer. Simul. 15, 1803–1812 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chen C.: Combined effects of Joule heating and viscous dissipation on magnetohydrodynamic flow past a permeable, stretching surface with free convection and radiative heat transfer. J. Heat Transf. Trans. ASME. 132, 064503 (2010)

    Article  Google Scholar 

  28. Kumar H.: Heat transfer over a stretching porous sheet subjected to power law heat transfer over a stretching porous sheet subjected to power law heat flux in presence of heat source. Therm. Sci. 2011(15), S187–S194 (2011)

    Article  Google Scholar 

  29. Elbashbeshy E.M.A., Emam T.G.: Effects of thermal radiation and heat transfer over an unsteady stretching surface embedded in a porous medium in the presence of heat source or sink. Therm. Sci. 15(2), 477–485 (2011)

    Article  Google Scholar 

  30. Rivlin R.S., Ericksen J.L.: Stress deformation relation for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MATH  MathSciNet  Google Scholar 

  31. Rajagopal K.R.: The flow of a second order fluid between rotating parallel plates. J. Non Newton. Fluid Mech. 9, 185–190 (1981)

    Article  MATH  Google Scholar 

  32. Rajagopal K.R.: On the creeping flow of the second order fluid. J. Non Newton. Fluid Mech. 15, 239–246 (1984)

    MATH  Google Scholar 

  33. Dunn J.E., Fosdick R.L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 56, 191–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  34. Fosdick R.L., Rajagopal K.R.: Anomalous features in the model of second order fluids. Arch. Ration. Mech. Anal. 70(2), 145–152 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. Dunn J.E., Rajagopal K.R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Eng. Sci. 33, 689–729 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Truesdell C., Rajagopal K.R.: An introduction to the mechanics of fluids. Birkhäuser, Boston (2000)

    Book  MATH  Google Scholar 

  37. Markovitz H., Coleman B.D.: Advances in applied mechanics, vol.8. Academic Press, New York (1964)

    Google Scholar 

  38. Vajravelu K., Rollins D.: Heat transfer in a viscoelastic fluid over a stretching sheet. J. Math. Anal. Appl. 158, 241–255 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  39. Harris, J., Rheology and non-Newtonian flow. Longman, London (1977)

  40. Abbas Z., Wang Y., Hayat T., Oberlack M.: Mixed convection in the stagnation-point of a Maxwell fluid towards a vertical stretching surface. Nonlinear Anal. Real World Appl. 11, 3218–3228 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rajagopal, K.R.; Ruzicka, M.; Srinivasa, A.R.: On the Oberbeck–Boussinesq approximation. Math. Models Methods. Appl. Sci. 6, 1157 (1998)

    Google Scholar 

  42. Cebeci T., Bradshaw P.: Physical and computational aspects of convective heat transfer. Springer, New York (1984)

    Book  MATH  Google Scholar 

  43. Vajravelu K.: Convection heat transfer at a stretching sheet with suction and blowing. J. Math. Anal. Appl. 188, 1002–1011 (1984)

    Article  MathSciNet  Google Scholar 

  44. Hsiao K.-L.: MHD mixed convection for viscoelastic fluid past a porous wedge. Int. J. Non Linear Mech. 46, 1–8 (2011)

    Article  Google Scholar 

  45. Hsiao K.-L.: Numerical conjugate heat transfer for free convection along a vertical plate Fin. J. Therm. Sci. 19(4), 337–345 (2010)

    Article  Google Scholar 

  46. Chapra C.S., Canale R.P.: Numerical methods for engineers, 2nd edn. McGraw-Hill, USA (1990)

    Google Scholar 

  47. Messaoudi S.A.: General decay of solutions of a weak viscoelastic equation. Arab. J. Sci. Eng. 36(8), 1569–1579 (2011)

    Article  MathSciNet  Google Scholar 

  48. Parida S.K., Acharya M., Dash G.C., Panda S.: MHD heat and mass transfer in a rotating system with periodic suction. Arab. J. Sci. Eng. 36(6), 1139–1151 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Long Hsiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, KL. Conjugate Heat Transfer for Mixed Convection and Maxwell Fluid on a Stagnation Point. Arab J Sci Eng 39, 4325–4332 (2014). https://doi.org/10.1007/s13369-014-1065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1065-z

Keywords

Navigation