Skip to main content
Log in

Kinetic Studies of Xylene Transformation Reactions Over ZSM-5 Zeolite

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A systematic study on the influence of reaction time and temperature during transformation reaction of m-, o- and p-xylene has been carried out over HZSM-5 catalyst using a riser simulator reactor system. The product selectivities have revealed that isomerization and disproportionation are the primary reactions. A higher conversion was observed for p-X as compared to that of m-X and o-X at all temperatures and all concentrations of ZSM-5. The highest selectivity of isomerization (100 %) was observed for p-X and o-X at 200 °C over 20 % ZSM-5, whereas the highest disproportionation selectivity (25 %) was observed for m-X at 400 °C over 10 % ZSM-5. The order of reactivity was observed to be dependent upon the concentration of ZSM-5. When ZSM-5 concentration was 10 % the order of reactivity was p-X >  m-X >  o-X, whereas at a higher concentration of ZSM-5 the order of reactivity was p-X >  o-X >  m-X. The experimental results have been modeled also using quasi-steady-state approximation. Kinetic parameters for o-X, m-X and p−X conversions into isomerization and disproportionation products were calculated using the catalyst activity decay function based on the time on stream. The apparent activation energies for disproportion as well as for the combined isomerization reactions over 10 % ZSM-5 catalyst were found to decrease as follows: E p-X  > E m-X  > E o-X . It was also noted that when concentration of ZSM-5 was increased from 10 to 20 % the activation energies were increased for isomerization reactions but decreased for disproportionation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

Concentration of specie i in the riser simulator (mole/m3)

CL:

Confidence limit

E i :

Apparent activation energy of ith reaction (kJ/mol)

k :

Apparent kinetic rate constant (m3/kg cat. s) \({k_0^{\prime} {\exp} \frac{-E_R}{R} \left({\frac{1}{T}-\frac{1}{T_0}} \right)}\)

\({k_o^{\prime}}\) :

Pre-exponential factor in Arrhenius equation defined at an average temperature(m3/kg cat. s) units based on first order reaction

MW i :

Molecular weight of specie i

r:

Correlation coefficient

R :

Universal gas constant (kJ/kmol K)

t :

Reaction time (s)

T :

Reaction temperature (K)

T 0 :

Average temperature of the experiment

V :

Volume of the riser (45 cm3)

W c :

Mass of the catalysts (0.81 g cat)

W hc :

Total mass of hydrocarbons injected in the riser (0.162 g)

y i :

Mass fraction of ith component (wt%)

α:

Apparent deactivation constant, s−1 (TOS Model)

References

  1. Morin S., Gnep S.N., Guisnet M.: A simple method for determining the relative significance of the unimolecular and bimolecular pathways of xylene isomerization over HY zeolites. J. Catal. 159, 296–304 (1996)

    Article  Google Scholar 

  2. Morin S., Ayrault P., Gnep S.N., Guisnet M.: Influence of the framework composition of commercial HFAU zeolites on their activity and selectivity in m-xylene transformation. Appl. Catal. A 166, 281–292 (1998)

    Article  Google Scholar 

  3. Guisnet M.: Characterization of acid catalysts by use of model reactions. Stud. Surf. Sci. Catal. 20, 283–297 (1985)

    Article  Google Scholar 

  4. Perez-Pariente, J.; Sastre, E.; Fornes, V.; Martens, J.A.; Jacobs, P.A.; Corma, A.: Isomerization and disproportionation of m-xylene over zeolite β. Appl. Catal. 69, 125–137 (1991)

    Google Scholar 

  5. Martens J.A., Perez-Pariente J., Sastre E., Corma A., Jacobs P.A: Isomerization and disproportionation of m-xylene: selectivities induced by the void structure of the zeolite framework. Appl. Catal. 45, 85–101 (1988)

    Article  Google Scholar 

  6. Olson D.H., Haag W.O.: Structure-selectivity relationship in xylene isomerization and selective toluene disproportionation. Am. Chem. Soc. Symp. Ser. 248, 275–307 (1984)

    Google Scholar 

  7. Jones, C.W.; Zones, S.I.; Davis, M.E.: m-Xylene reactions over zeolites with unidimensional pore systems. Appl. Catal. A 181, 289–303 (1999)

    Google Scholar 

  8. Lanewala M.A., Bolton A.P.: Isomerization of the xylenes using zeolite catalysts. J. Org. Chem. 34, 3107–3112 (1969)

    Article  Google Scholar 

  9. Cortes A., Corma A.: The mechanism of catalytic isomerization of xylenes: kinetic and isotopic studies. J. Catal. 51, 338–344 (1978)

    Article  Google Scholar 

  10. Corma A., Sastre E.: Evidence for the presence of bimolecular pathway in the isomerization of xylene on some large-pore zeolites. J. Catal. 129, 177–85 (1991)

    Google Scholar 

  11. Jones, C.W.; Zones, S.I.; Davis, M.E.: m-Xylene reactions over zeolites with unidimensional pore systems. Appl. Catal. A 181, 289–303 (1999)

    Google Scholar 

  12. Hyung-Ki M.; Seung H.C.; Suk B.H.: Mechanistic insight into the zeolite-catalyzed isomerization and disproportionation of m-xylene. ACS Catal. 2, 971–981 (2012)

    Google Scholar 

  13. Machado, V.; Rocha, J.; Carvalho, A.P.; Martins, A.: Modification of MCM-22 zeolite through sequential post-synthesis treatments. Implications on the acidic and catalytic behavior. Appl. Catal. A Gen. 445–446, 329–338 (2012).

    Google Scholar 

  14. Odedairo T., Balasamy R.J., Al-Khattaf S.: Aromatic transformations over aluminosilicate micro/mesoporous composite materials. Catal. Sci. Technol. 2, 1275–1286 (2012)

    Article  Google Scholar 

  15. Balasamy, R.J.; Odedairo, T.; Al-Khattaf, S.: Unique catalytic performance of mesoporous molecular sieves containing zeolite units in transformation of m-xylene. Appl. Catal. A Gen. 409–410, 223–233 (2011)

    Google Scholar 

  16. Chang X., Li Y., Zeng Z.: Kinetics study of the isomerization of xylene on HZSM-5 zeolite. 1. Kinetics model and reaction mechanism. Ind. Eng. Chem. Res. 31, 187–192 (1992)

    Article  Google Scholar 

  17. Ma Y.H., Savage L.A.: Xylene isomerization using zeolites in a gradientless reactor system. AIChE J. 33, 1233–1240 (1987)

    Article  Google Scholar 

  18. Wei, J.: A mathematical theory of enhanced para-xylene selectivity in molecular sieve catalysts. J. Catal. 76, 433–439 (1982)

    Google Scholar 

  19. Cejka J., Wichterlova B.: Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: active sites, zeolite topology, and reaction mechanisms. Catal. Rev. 44, 375–421 (2002)

    Article  Google Scholar 

  20. Olson D.H., Haag W.O.: Structure-selectivity relationship in xylene isomerization and selective toluene disproportionation. ACS Symp. Ser. (Catal. Mater. Relat. Struct. React.) 248, 275–307 (1984)

    Google Scholar 

  21. Werner, O.; Haag, W.O.; Lago, R.M.; Weisz, P.B.: Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite, Faraday Discuss. Chem. Soc. 72, 317 (1981)

    Google Scholar 

  22. Chutoransky Jr., P.; Dwyer, F.G.: Effect of zeolite crystallite site on the selectivity kinetics of the heterogeneous catalyzed isomerization of xylenes. Adv. Chem. Ser. (Mol. Sieves Int. Conf. 3rd) 121, 540–542 (1973)

  23. Chen N.Y., Kaeding W.W., Dwyer F.G.: Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J. Am. Chem. Soc. 101, 6783–6784 (1979)

    Article  Google Scholar 

  24. Choudhary V.R., Akolekar D.B.: Influence of intercrystalline mass transfer on catalytic properties of platinum-H-ZSM-5-alumina catalyst. J. Catal. 116, 130–43 (1989)

    Google Scholar 

  25. Al-Khattaf, S.; Atias, J.A.; Jarosch, K.; De Lasa, H.: Diffusion and catalytic cracking of 1,3,5 tri-iso-propyl-benzene in FCC catalysts. Chem. Eng. Sci. 57, 4909–4920 (2002)

    Google Scholar 

  26. Al-Khattaf S., Tukur N.M., Al-Amer A., Al-Mubaiyedh U.A.: Catalytic transformation of C7-C9 methyl benzenes over USY-based FCC zeolite catalyst. Appl. Catal. A 305, 21–31 (2006)

    Article  Google Scholar 

  27. Hedlund J., Oehrman O., Msimang V., van Steen E., Boehringer W., Sibya S., Moeller K.: Model-based estimation and control of particle velocity and melting in HVOF thermal spray. Chem. Eng. Sci. 59, 2647–2657 (2004)

    Article  Google Scholar 

  28. Brunauer S., Emmett P., Teller E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  Google Scholar 

  29. Sing, K.S.W.: Surface area determination. In: Proceedings of the International Symposium on Surface Area Determination, Held at the School of Chemistry, University of Bristol, UK, 16–18 July 1969, pp. 25–42 (1970)

  30. Gregg, S.J.; Sing, K.S.W.: Adsorption Surface Area and Porosity, 2nd edn. Academic Press Inc., US (1982)

  31. Emis C.A.: Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347–354 (1993)

    Article  Google Scholar 

  32. De Lasa, H.I.: Riser simulator, US Patent 5102628 (1992)

  33. Kraemer, D.W.: Ph.D. dissertation, University of Western Ontario, London, Canada (1991)

  34. Gobin O.C., Reitmeier S.J., Jentys A., Lercher J.A.: Comparison of the transport of aromatic compounds in small and large MFI particles. J. Phys. Chem. C 113, 20435–20444 (2009)

    Article  Google Scholar 

  35. Mirth, G.; Cejka, J.; Lercher, J.A.: Transport and isomerization of xylenes over HZSM-5 zeolites. J. Catal. 139, 24–33 (1993)

    Google Scholar 

  36. Collins, D.J.; Medina, R.J.; Davis, B.H. Can.: Xylene isomerization by ZSM-5 zeolite catalyst. J. Chem. Eng. 61, 29–35 (1983)

  37. Al-Khattaf S.: Xylenes reactions and diffusions in ZSM-5 zeolite-based catalyst. Ind. Eng. Chem. Res. 46, 59–69 (2007)

    Google Scholar 

  38. Iliyas A., Al-Khattaf S.: Xylene transformation over USY zeolite: an experimental and kinetic study. Appl. Catal. A 269, 225–236 (2004)

    Article  Google Scholar 

  39. Al-Khattaf, S.; Tukur, N.M., Al-Amer, A.: Modeling xylene reactions over ZSM-5 zeolite in a riser simulator: 1,3-versus 1,2-methyl shift. Ind. Eng. Chem. Res. 44, 7957–7968 (2005)

    Google Scholar 

  40. Narbeshuber T.F., Vinek H., Lercher J.A.: Monomolecular conversion of light alkanes over H-ZSM-5. J. Catal. 157, 388–395 (1995)

    Article  Google Scholar 

  41. Demuth T., Raybaud P., Lacombe S., Toulhoat H.: Effects of zeolite pore sizes on the mechanism and selectivity of xylene disproportionation—a DFT study. J. Catal. 222, 323–337 (2004)

    Article  Google Scholar 

  42. Mukti R.R., Jentys A., Lercher J.A.: Orientation of alkyl-substituted aromatic molecules during sorption in the pores of H/ZSM-5 zeolites. J. Phys. Chem. C 111, 3973–3980 (2007)

    Article  Google Scholar 

  43. Rozanska, X.; Van Santen, R.A.; Hutschka, F.; Hafner J.: A periodic DFT study of intramolecular isomerization reactions of toluene and xylenes catalyzed by acidic mordenite. J. Am. Chem. Soc. 123 7655–7667 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Al-Khattaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Shammari, A., Akhtar, M.N., Odedairo, T. et al. Kinetic Studies of Xylene Transformation Reactions Over ZSM-5 Zeolite. Arab J Sci Eng 39, 3423–3440 (2014). https://doi.org/10.1007/s13369-014-1063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1063-1

Keywords

Navigation