Skip to main content
Log in

Clustering of Hyperspectral Images with an Ensemble Method Based on Fuzzy C-Means and Markov Random Fields

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

During the past few years, cluster ensemble methods have been introduced in the area of pattern recognition as a more accurate alternative to individual clustering algorithms as they can provide novel, robust, and stable solutions. The development of these methods is mainly motivated by the success of the combination of supervised classifiers also known as classifier ensemble. In this paper, we propose a novel ensemble method for the classification of hyperspectral images based on Fuzzy c-means (FCM) and Markov random field (MRF) theory. Firstly, in order to construct the ensemble of clustering maps, which call here “partitions”, we run the FCM algorithm several times with different initializations and different subsets of features (spectral bands) selected randomly from the high-dimensional input feature vector characterizing the hyperspectral image. Secondly, since there is no-ground truth information, the class labels contained in each generated partition are symbolic, meaning that the same class of pixels can be labeled with different labels in different partitions of the ensemble. Therefore, an optimal relabeling of the ensemble with respect to a representative partition determined on the basis of the maximum entropy principle is made via a pairwise relabeling procedure. Finally, in the last step, the relabeled partitions are fused by means of an MRF method. The latter exploits two kinds of sources of contextual information: spatial and inter-partition contextual information. During the optimization process, the contributions of the different partitions are controlled through mutual information weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazi Y., Melgani F.: Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 44, 3374–3385 (2006)

    Article  Google Scholar 

  2. Shi, H.; Shen, Y.; Liu, Z.: Hyperspectral bands reduction based on rough sets and Fuzzy c-means clustering. 20th IEEE Instrum. Meas. Technol. Conf. (IMTC’03) 2, 1053–1056 (2003)

  3. Gda, A.; Filho, S.; Frery, A.C.; de Araujo, C.C.; Alice, H.; Cerqueira, J.; Loureiro, J.A.; de Lima M.E.; Mdas Oliveira, G.S.; Horta, M.M.: Hyperspectral images clustering on reconfigurable hardware using the K-means algorithm. 16th Symp. Integr. Circuits Syst. Design (SBCCI’03) 99–104 (2003)

  4. Lee, S.; Crawford, M.M.: Hierarchical clustering approach for unsupervised image classification of hyperspectral data. 2004 IEEE Geosc. Remote Sens. Symp. (IGARSS’04) Anchorage 2, 941–944 (2004)

  5. Kersten P.R., Lee J.S., Ainsworth T.L.: Unsupervised classification of polarimetric synthetic aperture radar images using Fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens. 43, 519–527 (2005)

    Article  Google Scholar 

  6. Marcal A.R.S., Castro L.: Hierarchical clustering of multispectral images using combined spectral and spatial criteria. IEEE Geosci. Remote Sens. Lett. 2, 59–63 (2005)

    Article  Google Scholar 

  7. Tran T.N., Wehrens R., Hoekman D.H., Buydens L.M.C.: Initialization of Markov random field clustering of large remote sensing images. IEEE Trans. Geosci. Remote Sens. 43, 1912–1919 (2005)

    Article  Google Scholar 

  8. Zhong Y., Zhang L., Huang B., Li P.: An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 44, 420–431 (2006)

    Article  Google Scholar 

  9. Bandyopadhyay, S.; Maulik, U.; Mukhopadhyay, A.: Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 45, 1506–1511 (2007)

    Google Scholar 

  10. Liu, X.; Li, X.; Zhang, Y.; Yang, C.; Xu, W.; Li, M.; Luo, H.: Remote sensing image classification based on dot density function weighted FCM clustering algorithm. 2007 IEEE Geosci. Remote Sens. Symp. (IGARSS’07) Barc. 2, 2010–2013 (2007)

  11. Xia G.S., He C., Sun H.: A rapid and automatic MRF-based clustering method for SAR images. IEEE Geosci. Remote Sens. Lett. 4, 596–600 (2007)

    Article  Google Scholar 

  12. Bilgin, G.; Ertürk, S.; Yildirim, T.: Unsupervised classification of hyperspectral-image data using Fuzzy approaches that spatially exploit membership relations. IEEE Geosci. Remote Sens. Lett. 5, 673–677 (2008)

    Google Scholar 

  13. Paoli A., Melgani F., Pasolli E.: Clustering of hyperspectral images based on multiobjective swarm optimization. IEEE Trans. Geosci. Remote Sens. 47, 4175–4188 (2009)

    Article  Google Scholar 

  14. Ayed H.G., Kamel M.S.: On voting based consensus of cluster ensembles. Pattern Recognit. 43, 1043–1953 (2010)

    Google Scholar 

  15. Ayed H.G., Kamel M.S.: Cumulative voting consensus method for partitions with a variable number of clusters. IEEE Trans. Pattern Anal. Mach. Intell. 30, 160–173 (2008)

    Article  Google Scholar 

  16. Kuncheva, L.I.; Vetrov, D.P.: Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1798–1808 (2006)

    Google Scholar 

  17. Fred, A.; Jain, A.K.: Combining multiple clustering’s using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 835–850 (2005)

    Google Scholar 

  18. Kuhn H.: The Hungarian method for the assignment problem. Nav. Res. Logist. Quart. 2, 83–97 (1955)

    Article  Google Scholar 

  19. Nock R., Nielsen F.: On weighting clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1223–1235 (2006)

    Article  Google Scholar 

  20. Dubes, R.C.; Jain, A.K.: Random field models in image analysis. J. Appl. Stat. 16, 131–163 (1989)

    Google Scholar 

  21. Melgani, F.; Bazi, Y.: Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery. IEEE Geosci. Remote Sens. Lett. 3, 457–461 (2006)

    Google Scholar 

  22. Melgani, F.; Serpico, S.B.: A Markov random field approach to spatio-temporal contextual image classification. IEEE Trans. Geosci. Remote Sens. 41, 2478–2487 (2003)

    Google Scholar 

  23. Serpico S.B., Moser G.: Weight parameter optimization by the Ho-Kasyap algorithm in MRF models for supervised image classification. IEEE Trans. Geosci. Remote Sens. 44, 3695–3705 (2006)

    Article  Google Scholar 

  24. Bazi Y., Melgani F., Bruzzone L., Vernazza G.: A genetic expectation maximization method for unsupervised change detection in multitemporal SAR imagery. Int. J. Remote Sens. 30, 6591–6610 (2009)

    Article  Google Scholar 

  25. Picco, M.; Palacio, G.: Unsupervised classification of SAR images using Markov random fields and \({g_I^0 }\) models. IEEE Geosci. Remote Sens. Lett. 8, 350–353 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakoub Bazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alhichri, H., Ammour, N., Alajlan, N. et al. Clustering of Hyperspectral Images with an Ensemble Method Based on Fuzzy C-Means and Markov Random Fields. Arab J Sci Eng 39, 3747–3757 (2014). https://doi.org/10.1007/s13369-014-1037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1037-3

Keywords

Navigation