Skip to main content
Log in

Internal Fault Identification and Classification of Transformer with the Aid of Radial Basis Neural Network (RBNN)

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the identification and classification of internal fault current of power transformer occurring during the time of abnormal condition. The need of internal fault current classification is to avoid the complexity of the fault category. In this paper, the inrush current and short circuit current of the transformer internal windings are classified from the nominal current. Before the classification process, the analytical model parameters based identification of inrush current is described. The analytical model parameters considered are wave shape and wave peak of the current. The output of the power transformer is applied to classifier and then, the shape and peak of the waveform are extracted from the classifier. Here, an artificial intelligence based radial basis neural network (RBNN) classifier is used to extract the wave parameters. In the RBNN, the Gaussian function is considered as an activation function. The proposed internal fault identification and classification technique is implemented and tested with different ratings of transformer, and the fault classification performances are evaluated. Then, the evaluated results are compared with the feed-forward network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refernces

  1. Islam, A.; Hoque, A.: Detection of mechanical deformation in old aged power transformer using cross correlation co-efficient analysis method. Glob. J. Res. Eng. 11(5) (2011)

  2. Reddy S., Vijaykumar M.: Evaluation of transformer faults using double fourier series—a fastest method for field computations. J. Theor. Appl. Inf. Technol. 4(1), 1–6 (2008)

    Google Scholar 

  3. Diaz G., Arboleya P., Aleixandre J.G.: Analytical approach to internal fault simulation in power transformers based on fault-related incremental currents. IEEE Trans. Power Deliv. 21(1), 142–149 (2006)

    Article  Google Scholar 

  4. Tripathy M., Maheshwari R.P., Verma H.K.: Improved transformer protection using probabilistic neural network and power differential method. Int. J. Eng. Sci. Technol. 2(3), 29–44 (2010)

    Article  Google Scholar 

  5. Paraskar, S.R.; Beg, M.A.; Dhole, G.M.: Discrimination between inrush and fault in transformer: ANN approach. Int. J. Adv. Technol. 2(2) (2011)

  6. Berg H.P., Fritze N.: Reliability of main transformers. Electron. J. Int. Group Reliab. 2(1), 52–69 (2011)

    Google Scholar 

  7. Rad I.S., Alinezhad M., Naghibi S.E., Kamarposhti M.A.: Detection of internal fault in differential transformer protection based on fuzzy method. Int. J. Phys. Sci. 6(26), 6150–6158 (2011)

    Google Scholar 

  8. Obed A.A., Alwan M.A., Taboor W.N.: A wavelet packet transform-based technique for the discrimination of inrush currents from faults in three-phase transformer. J. Basrah Res. (Sciences) 37(4), 1–14 (2011)

    Google Scholar 

  9. Jamali M., Mirzaie M., Asghar Gholamian S.: Calculation and analysis of transformer inrush current based on parameters of transformer and operating conditions. Electron. Electr. Eng. J. 109(3), 17–20 (2011)

    Google Scholar 

  10. Badran, E.A.; Rizk, M.E.M.; Abdel-Rahman, M.H.: Investigation of ferroresonance in offshore wind farms. J. Am. Sci. 7(9) (2011)

  11. Abdolmutaleb, A.-S.; Gordon, K.: Modeling and calculating the in-rush currents in power transformers. Damascus Univ. J. 21(1) (2005)

  12. Jamali, M.; Mirzaie, M.; Asghar-Gholamian, S.: Mitigation of magnetizing inrush current using sequential phase energization technique. Electron. Electr. Eng. 108(2) (2011)

  13. Manana, M.; Eguıluz, Ortiz, A.; Dıez, G.; Renedo, C.; Perez, S.: Effects of magnetizing inrush current on power quality and distributed generation. In: 9th Spanish Portuguese Congress on Electrical Engineering (2005)

  14. Faiz, J.; Ebrahimi, B.M.; Noori, T.: Three- and two-dimensional finite-element computation of inrush current and short-circuit electromagnetic forces on windings of a three-phase core-type power transformer. IEEE Trans. Magn. 44(5) (2008)

  15. Jiali, Simulating method of magnetizing inrush current of power transformers using concept of instantaneous power. Trans. Tianjin Univ. 5(1) (1999)

  16. Balaga, H.; Vishwakarma, D.N.; Sinha, A.: Numerical differential protection of power transformer using ANN as a pattern classifier. In: International Conference on Power, Control and Embedded Systems (ICPCES), pp. 1–6 (2010)

  17. Panthala S.: Inrush current control in transformers. AU J. 5(4), 1–4 (2002)

    Google Scholar 

  18. Abdulsalam, S.G.; Xu, W.: A Sequential phase energization method for transformer inrush current reduction—transient performance and practical considerations. IEEE Trans. Power Deliv. 22(1) (2007)

  19. Cui Y., Abdulsalam S.G., Chen S., Xu W.: A sequential phase energization technique for transformer inrush current reduction part I: simulation and experimental results. IEEE Trans. Power Deliv. 20(2), 943–949 (2005)

    Article  Google Scholar 

  20. Abdulsalam, S.G.; Xu, W.: Analytical study of transformer inrush current transients and its applications. In: International Conference on Power Systems (2005)

  21. El-Bages M.S.: Improvement of digital differential relay sensitivity for internal ground faults in power transformers. IJTPE J. 3(3), 1–5 (2011)

    Google Scholar 

  22. Monsef H., Lotfifard S.: A New wavelet-based approach for internal fault current identification in power transformers. Scientia Iranica 15(2), 160–169 (2008)

    Google Scholar 

  23. Barzegaran M.R., Mirzaie M.: Detecting the position of winding short circuit faults in transformer using high frequency analysis. Eur. J. Sci. Res. 23(4), 644–658 (2008)

    Google Scholar 

  24. Abdallah J.: Using the frequency response analysis (FRA) in transformers internal fault detection. WSEAS Trans. Power Syst. 4(1), 297–306 (2009)

    Google Scholar 

  25. Xu Y., Zhang D., Wang Y.: Active diverse learning neural network ensemble approach for power transformer fault diagnosis. J. Netw. 5(10), 1151–1159 (2010)

    Google Scholar 

  26. Nabwey H.A., Rady E.A., Kozae A.M., Ebady A.N.: Fault diagnosis of power transformer based on fuzzy logic, rough set theory and inclusion degree theory. J. Power Energy Eng. 1(2), 45–49 (2010)

    Google Scholar 

  27. Abdelaziz A.Y., Ibrahim A.M.: Classification of transient phenomena in power transformers based on a wavelet-ANN approach. J. Electron. Electr. Eng. 3(4), 462–467 (2011)

    Google Scholar 

  28. Bahmanifirouzi B., Jabbari M., Nafar M.: A sensitive method for identifying winding turn to turn faults in power transformer. Aust. J. Basic Appl. Sci. 5(7), 303–307 (2011)

    Google Scholar 

  29. Lu J., Chen G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50(6), 841–846 (2005)

    Article  Google Scholar 

  30. Lu, J.; Yu, X.; Chen, G.: Chaos synchronization of general complex dynamical networks. Phys. A 334(1–2), 281–302 (2004)

  31. Yadaiah N., Ravi N.: Internal fault detection techniques for power transformers. Appl. Soft Comput. 11, 5259–5269 (2011)

    Article  Google Scholar 

  32. Lu Z., Tang W.H., Ji T.Y., Wu Q.H.: A morphological scheme for inrush identification in transformer protection. IEEE Trans. Power Deliv. 24(2), 560–568 (2009)

    Article  Google Scholar 

  33. Menniti, D.; Pinnarelli, A.; Sorrentino, N.: Coordinated control of phase shifters in multiarea power system to improve load-frequency dynamic performance. In: IEEE Mediterranean Conference on Electrotechnical (2012)

  34. Liu H., Lu J.A., Lu J., Hill D.: Structure identification of uncertain general complex dynamical networks with time delay. Automatica 45(8), 1799–1807 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Umasankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umasankar, L., Kalaiarasi, N. Internal Fault Identification and Classification of Transformer with the Aid of Radial Basis Neural Network (RBNN). Arab J Sci Eng 39, 4865–4873 (2014). https://doi.org/10.1007/s13369-014-1030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1030-x

Keywords

Navigation