Skip to main content
Log in

Efficient Computation of Distribution Function for Sum of Large Number of Lognormal Random Variables

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents efficient and convenient methods for computing the sum of large number of lognormal (LN) random variables (RVs) while utilizing the unexpanded form for the characteristic function of the sum obtained previously. These methods are (1) the application of appropriate quadrature rules to the integral involving the characteristic function for the sum after a proper change of variables, and (2) the application of the Epsilon algorithm to reduce the number of needed computations. The Epsilon algorithm is also used to compute the distribution for the sum of correlated LN RVs. Results indicate that while (1) presents a simple to evaluate sum in terms of the weights and nodes of the chosen quadrature rule, it may require 100 to 1,000s of terms to arrive at a reasonable approximation of the target cumulative distribution function. The second method reduces the needed evaluations to as little as 10 and improves the accuracy for both the lower end and higher end of the approximated cdf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Limpert E. et al.: Log-normal distributions across the sciences: keys and clues. BioScience, 51, 341–352 (2001)

    Article  Google Scholar 

  2. Cox D.: Cochannel interference considerations in frequency reuse small-coverage-area radio systems. IEEE Trans. Commun. 30, 135–142 (1982)

    Article  Google Scholar 

  3. Fenton L.: The sum of log-normal probability distributions in scatter transmission systems. IRE Trans. Commun. Syst. 8, 57–67 (1960)

    Article  Google Scholar 

  4. Schwartz S.C., Yeh Y.S.: On the distribution function and moments of power sums with log-normal components. Bell Syst. Tech. J. 61, 1441–1462 (1982)

    Article  MATH  Google Scholar 

  5. Safak A.: Statistical analysis of the power sum of multiple correlated log-normal components. IEEE Trans. Vehicular Technol. 42, 58–61 (1993)

    Article  Google Scholar 

  6. Mehta N.B. et al.: Approximating a sum of random variables with a lognormal. IEEE Trans. Wirel. Commun. 6, 2690–2699 (2007)

    Article  Google Scholar 

  7. Beaulieu N.C., Xie Q.: An optimal lognormal approximation to lognormal sum distributions. IEEE Trans. Vehicular Technol. 53, 479–489 (2004)

    Article  Google Scholar 

  8. Szyszkowicz S.S., Yanikomeroglu H.: Limit theorem on the sum of identically distributed equally and positively correlated joint lognormals. IEEE Trans. Commun. 57, 3538–3542 (2009)

    Article  Google Scholar 

  9. Beaulieu N.C.: An extended limit theorem for correlated lognormal sums. IEEE Trans. Commun. 60, 23–26 (2012)

    Article  Google Scholar 

  10. Beaulieu N.C., Rajwani F.: Highly accurate simple closed-form approximations to lognormal sum distributions and densities. IEEE Commun. Lett. 8, 709–711 (2004)

    Article  Google Scholar 

  11. Lam C.L.J., Le-Ngoc T.: Log-shifted gamma approximation to lognormal sum distributions. IEEE Trans. Vehicular Technol. 56, 2121–2129 (2007)

    Article  Google Scholar 

  12. Liu Z. et al.: Approximating lognormal sum distributions with power lognormal distributions. IEEE Trans. Vehicular Technol. 57, 2611–2617 (2008)

    Article  Google Scholar 

  13. Wu, Z.; et al.: A novel highly accurate log skew normal approximation method to lognormal sum distributions, In: IEEE Wireless Communications and Networking Conference, 2009 (WCNC 2009), Budapest, pp. 1–6 (2009)

  14. Zhang Q., Song S.: A systematic procedure for accurately approximating lognormal-sum distributions. IEEE Trans. Vehicular Technol. 57, 663–666 (2008)

    Article  Google Scholar 

  15. Di Renzo M. et al.: Approximating the linear combination of log-normal RVs via pearson type IV distribution for UWB performance analysis. IEEE Trans. Commun. 57, 388–403 (2009)

    Article  Google Scholar 

  16. Di Renzo M. et al.: Further results on the approximation of log-normal power sum via pearson type IV distribution: a general formula for log-moments computation. IEEE Trans. Commun. 57, 893–898 (2009)

    Article  Google Scholar 

  17. Di Renzo M. et al.: Smolyak’s algorithm: a simple and accurate framework for the analysis of correlated log-normal power-sums. IEEE Commun. Lett. 13, 673–675 (2009)

    Article  Google Scholar 

  18. Di Renzo M. et al.: Distributed data fusion over correlated log-normal sensing and reporting channels: Application to cognitive radio networks. IEEE Trans. Wirel. Commun. 8, 5813–5821 (2009)

    Article  Google Scholar 

  19. Di Renzo M. et al.: A comprehensive framework for performance analysis of cooperative multi-hop wireless systems over log-normal fading channels. IEEE Trans. Commun. 58, 531–544 (2010)

    Article  Google Scholar 

  20. Zhao L., Ding J.: Least squares approximations to lognormal sum distributions. IEEE Trans. Vehicular Technol. 56, 991–997 (2007)

    Article  Google Scholar 

  21. Szyszkowicz S.S. et al.: Aggregate interference distribution from large wireless networks with correlated shadowing: an analytical–numerical–simulation approach. IEEE Trans. Vehicular Technol. 60, 2752–2764 (2011)

    Article  Google Scholar 

  22. Mahmoud A.S.H.: New Quadrature-based approximations for the characteristic function and the distribution function of sums of lognormal random variables. IEEE Trans. Vehicular Technol. 59, 3364–3372 (2010)

    Article  Google Scholar 

  23. Gubner J.A.: A new formula for lognormal characteristic functions. IEEE Trans. Vehicular Technol. 55, 1668–1671 (2006)

    Article  Google Scholar 

  24. Tellambura C., Senaratne D.: Accurate computation of the MGF of the lognormal distribution and its application to sum of lognormals. IEEE Trans. Commun. 58, 1568–1577 (2010)

    Article  Google Scholar 

  25. Beaulieu N.C.: Fast convenient numerical computation of lognormal characteristic functions. IEEE Trans. Commun. 56, 331–333 (2008)

    Article  Google Scholar 

  26. Abramowitz, M; Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, NewYork: Dover, p. 890 (1972)

  27. Burkardt, J.: Sandia Rules. (2011). Available: http://people.sc.fsu.edu/~jburkardt/m_src/sandia_rules/sandia_rules.html

  28. Shanks D.: Non-linear trasnformations of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)

    MATH  MathSciNet  Google Scholar 

  29. Wynn P.: On a device for computing the (Sn) transformation. Math. Tables Other Aids Comput. 10, 91–96 (1956)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf S. Hasan Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, A.S.H., Rashed, A.H. Efficient Computation of Distribution Function for Sum of Large Number of Lognormal Random Variables. Arab J Sci Eng 39, 3953–3961 (2014). https://doi.org/10.1007/s13369-014-0993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-0993-y

Keywords

Navigation