Skip to main content
Log in

Prediction of Tool Life when End Milling of Ti6Al4V Alloy Using Hybrid Learning System

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Tool life significantly affects the machining cost and productivity. A wide number of techniques have been applied to modelling metal cutting processes. Techniques of artificial intelligence are new soft computing methods which suit solutions of nonlinear and complex problems such as metal cutting processes. The current study is concerned with the application of an adaptive neuro-fuzzy inference system (ANFIS). This ANFIS model is developed to predict tool life when end milling of Ti6Al4V alloy with coated (PVD) and uncoated cutting tools are under dry cutting conditions. By carrying out training and testing the ANFIS models, the current study employed real experimental results, and based on such results, a selection of the best model was conducted based on the mean absolute percentage error (%). For the modelling process, the study adopted a generalised bell shape membership function, and there was a change in its number from 2 to 5. The findings revealed that ANFIS is capable of modelling tool life in end milling process, and that there was good matching obtained between experimental and predicted results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANFIS:

Adaptive neuro-fuzzy inference system

GP:

Genetic programming

ANN:

Artificial neural network

RSM:

Response surface methodology

MAPE:

Mean absolute percentage error

x, y :

Inputs of the ANFIS

f :

Output of the ANFIS

α 1, β 1, Ω 1, α 2, β 2, Ω 2 :

Linear parameters

A 1, B 1, A 2, B 2 :

Non linear parameters

Q 1, i :

Output of the ith node

Q 2, j :

Output of the jth node

μ A i μ B i :

Membership function of the inputs

Q2, i = w i :

Weight function of w 1 and w 2 of product layer

Q3, i = W i :

Normalised weight function of normalised layer

Q4, i :

Output of de-fuzzy layer

Q5, i :

Output of the output layer

References

  1. Alauddin, M.; El Baradie, M.A.; Hashmi, M.S.J.: Prediction of tool life in end milling by response surface methodology. J. Mater. Process. Technol. 71(3), 456–465 (1997). doi:10.1016/s0924-0136(97)00111-8

  2. Zain, A.M.; Haron, H.; Sharif, S.: Prediction of surface roughness in the end milling machining using Artificial Neural Network. Expert Syst. Appl. 37(2), 1755–1768 (2010). doi:10.1016/j.eswa.2009.07.033

  3. Zain, A.M.; Haron, H.; Sharif, S.: Application of regression and ANN techniques for modeling of the surface roughness in end milling machining process. In: Modelling & simulation, 2009. AMS ’09. Third Asia International Conference on, 25–29 May 2009. pp. 188–193 (2009)

  4. Soleymani Yazdi, M.R.; Seyed Bagheri, G.; Tahmasebi, M.: Finite volume analysis and neural network modeling of wear during hot forging of a steel splined Hub. Arab. J. Sci. Eng. 37(3), 821–829 (2012). doi:10.1007/s13369-012-0210-9

  5. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. systems, man and cybernetics, IEEE transactions on 23(3), 665–685 (1993)

    Article  Google Scholar 

  6. Sivanandam, S.N.; Deepa, S.: Introduction to neural networks using MATLAB 6.0. Tata McGraw-Hill (2006)

  7. AbdulRazzaq, M.; Ariffin, A.K.; El-Shafie, A.; Abdullah, S.; Sajuri, Z.: Prediction of fatigue crack growth rate using rule-based systems. In: Modeling, simulation and applied optimization (ICMSAO), 2011 4th International Conference on, 19–21 April 2011 pp. 1–8 (2011)

  8. Zuperl, U.; Cus, F.; Mursec, B.; Ploj, T.: A generalized neural network model of ball-end milling force system. J. Mater. Process. Technol. 175(1–3), 98–108 (2006). doi:10.1016/j.jmatprotec.2005.04.036

  9. Dweiri, F.; Al-Jarrah, M.; Al-Wedyan, H.: Fuzzy surface roughness modeling of CNC down milling of Alumic-79. J. Mater. Process. Technol. (133), 266–275 (2003)

  10. Lo, S.: An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. J. Mater. Process. Technol. 142(3), 665–675 (2003). doi:10.1016/s0924-0136(03)00687-3

  11. Göloğlu, C.; Arslan, Y.: Zigzag machining surface roughness modelling using evolutionary approach. J. Intell. Manuf. 20(2), 203–210 (2008). doi:10.1007/s10845-008-0222-1

  12. Ho, W.-H.; Tsai, J.-T.; Lin, B.-T.; Chou, J.-H.: Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Syst. Appl. 36(2), 3216–3222 (2009). doi:10.1016/j.eswa.2008.01.051

  13. Uros, Z.; Franc, C.; Edi, K.: Adaptive network based inference system for estimation of flank wear in end-milling. J. Mater.Process. Technol. 209(3), 1504–1511 (2009). doi:10.1016/j.jmatprotec.2008.04.002

  14. Stalin John, M.R.; Vinayagam, B.K.: Optimization of ball burnishing process on tool steel (T215Cr12) in CNC machining centre using response surface methodology. Arab. J. Sci. Eng. 36(7), 1407–1422 (2011). doi:10.1007/s13369-011-0126-9

  15. Minggang Dong, N.W.: Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness. Appl. Mathe. Modell. (35), 1024–1035 (2011). doi:10.1016/j.apm.2010.07.048

  16. Pinar, A.: Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arab. J. Sci. Eng. pp. 1–10 (2012). doi:10.1007/s13369-012-0372-5

  17. Kadirgama, K.; Noor, M.M.; Rahman, M.M.: Optimization of surface roughness in end milling using potential support vector machine. Arab. J. Sci. Eng. 37(8), 2269–2275 (2012). doi:10.1007/s13369-012-0314-2

  18. Elmagrabi, N.H.E.: End milling of titanium alloy Ti-6Al-4V with carbide tools using response surface methodology. Universiti Kebangsaan Malaysia, Bangi (2009)

    Google Scholar 

  19. Haron, C.H.C.; Ginting, A.; Arshad, H.: Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S. J. Mater. Process. Technol. 185(1–3), 77–82 (2007). doi:10.1016/j.jmatprotec.2006.03.135

  20. Metcut: machining data handbook. Metcut Research Associates, Ohio (1980)

  21. ISO: tool life testing in milling-part 2:end milling. International Organization for Standardization, Geneve (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaharah Abdul Ghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zubaidi, S., Ghani, J.A. & Che Haron, C.H. Prediction of Tool Life when End Milling of Ti6Al4V Alloy Using Hybrid Learning System. Arab J Sci Eng 39, 5095–5111 (2014). https://doi.org/10.1007/s13369-014-0975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-0975-0

Keywords

Navigation