Skip to main content
Log in

Iris Segmentation in Visible Wavelength Images using Circular Gabor Filters and Optimization

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Segmenting iris from images captured under the visible wavelength spectrum represents a challenging task. To address this problem, a new iris segmentation method based on the Circular Gabor Filter (CGF) and optimization is proposed. The CGF is utilized to localize the rough position of the pupil center. According to the localization result, few pixels of the pupil (iris) and non-pupil (non-iris) regions are set as initial pixels in the related region. Next, by optimization scheme, initial pixels are automatically propagated over the image until they cover the whole pupil (iris) and non-pupil (non-iris) regions. The originality of the proposed method includes developing a new method to localize the iris and eyelids boundaries simultaneously, and furthermore robust to reflections. Experimental results on the non-cooperative UBIRIS.v1 iris images reveal the effectiveness of the proposed method in comparison with some of state-of-the-art methods. The results include classification error rates of 2.08 and 3.05 % for session one and two of the UBIRIS.v1 database, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wildes, R.P.: Iris recognition: an emerging biometrie technology. In: Proceedings of the IEEE 85(8), 1348–1363 (1997)

    Google Scholar 

  2. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  3. Ma, L.; Tan, T.; Wang, Y.; Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)

    Article  Google Scholar 

  4. Sung, E.; Chen, X.; Zhu, J.; Yang, J.: Towards non-cooperative iris recognition systems. In: the 7th International Conference on Control, Automation, Robotics and Vision, Singapore 2002, pp. 990–995

  5. Proença, H.; Alexandre, L.A.: Iris segmentation methodology for non-cooperative recognition. IEE Proc. Vis. Image Signal Process. 153(2), 199–205 (2006)

  6. Proença, H.; Alexandre, L.A.: UBIRIS: a noisy iris image database. In: 13th International Conference on Image Analysis and Processing. Lecture Notes in Computer Science, vol. 3617, pp. 970–977. Springer, Berlin (2005)

  7. Puhan, N.B.; Sudha, N.; Sivaraman Kaushalram, A.: Efficient segmentation technique for noisy frontal view iris images using Fourier spectral density. Signal Image Video Process. 5(1), 105–119 (2011)

    Article  Google Scholar 

  8. Jeong, D.S.; Hwang, J.W.; Kang, B.J.; Park, K.R.; Won, C.S.; Park, D.K.; Kim, J.: A new iris segmentation method for non-ideal iris images. Image Vis. Comput. 28(2), 254–260 (2010)

    Google Scholar 

  9. Tan, T.; He, Z.; Sun, Z.: Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vis. Comput. 28(2), 223–230 (2010)

    Article  Google Scholar 

  10. Schuckers, S.A.C.; Schmid, N.A.; Abhyankar, A.; Dorairaj, V.; Boyce, C.K.; Hornak, L.A.: On techniques for angle compensation in nonideal iris recognition. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(4), 1176–1190 (2007)

    Google Scholar 

  11. Daugman, J.: New methods in iris recognition. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(4), 1167–1175 (2007)

    Article  Google Scholar 

  12. Shah, S.; Ross, A.: Iris segmentation using geodesic active contours. IEEE Trans. Inf. Forensics Secur. 4(4), 824–836 (2009)

    Article  Google Scholar 

  13. Liu, X.: Optimizations in iris recognition. 3406882, University of Notre Dame (2007)

  14. Arvacheh, M.E.: A study of segmentation and normalization for iris recognition systems. MR23443, University of Waterloo (Canada) (2006)

  15. Roy, K.; Bhattacharya, P.; Suen, C.Y.: Towards nonideal iris recognition based on level set method, genetic algorithms and adaptive asymmetrical SVMs. Eng. Appl. Artif. Intell. 24(3), 458–475 (2011)

    Google Scholar 

  16. Ibrahim, M.T.; Khan, T.M.; Khan, S.A.; Khan, M.A.; Guan, L.: Iris localization using local histogram and other image statistics. Opt. Lasers Eng. 50(4), 645–654 (2012). doi:10.1016/j.optlaseng.2011.11.008

  17. Li, P.H.; Ma, H.W.: Iris recognition in non-ideal imaging conditions. Pattern Recognit. Lett. 33(7), 1012–1018 (2012). doi:10.1016/j.patrec.2011.06.017

  18. Al-Zubi, R.; Abu-Al-Nadi, D.: Automated personal identification system based on human iris analysis. Pattern Anal. Appl. 10(2), 147–164 (2007). doi:10.1007/s10044-006-0058-2

    Google Scholar 

  19. Boles, W.W.; Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process. 46(4), 1185–1188 (1998)

    Google Scholar 

  20. Chen, Y.; Adjouadi, M.; Han, C.; Wang, J.; Barreto, A.; Rishe, N.; Andrian, J.: A highly accurate and computationally efficient approach for unconstrained iris segmentation. Image Vis. Comput. 28(2), 261–269 (2010)

    Google Scholar 

  21. Donida Labati, R.; Scotti, F.: Noisy iris segmentation with boundary regularization and reflections removal. Image and Vis. Comput. 28(2), 270–277 (2010)

    Google Scholar 

  22. He, Z.; Tan, T.; Sun, Z.; Qiu, X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1670–1684 (2009)

    Google Scholar 

  23. Li, P.; Liu, X.; Xiao, L.; Song, Q.: Robust and accurate iris segmentation in very noisy iris images. Image Vis. Comput. 28(2), 246–253 (2010)

    Article  Google Scholar 

  24. Ling, L.L.; de Brito, D.F.: Fast and efficient iris image segmentation. J. Med. Biol. Eng. 30(5), 381–392 (2010)

    Google Scholar 

  25. Ma, L.; Tan, T.; Wang, Y.; Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Process. 13(5), 739–750 (2004)

    Article  Google Scholar 

  26. Roy, K.; Bhattacharya, P.; Suen, C.Y.: Iris segmentation using game theory. Signal Image Video Process. 1–15 (2010)

  27. Roy, K.; Bhattacharya, P.; Suen, C.: Iris recognition using shape-guided approach and game theory. Pattern Analy. Appl. 14(4), 329–348 (2011). doi:10.1007/s10044-011-0229-7

  28. Fitzgibbon, A.; Pilu, M.; Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 476–480 (1999)

    Google Scholar 

  29. Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. 2(6), 1160–1169 (1985). doi:10.1364/JOSAA.2.001160

    Google Scholar 

  30. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  31. Du, Y.; Belcher, C.; Zhou, Z.: Scale invariant Gabor descriptor-based noncooperative iris recognition. Eurasip J. Adv. Signal Process. (2010). doi:10.1155/2010/936512

  32. Yang, J.; Liu, L.; Jiang, T.; Fan, Y.: A modified Gabor filter design method for fingerprint image enhancement. Pattern Recog. Lett. 24(12), 1805–1817 (2003)

    Article  Google Scholar 

  33. Yang, P.; Du, B.; Shan, S.; Gao, W.: A novel pupil localization method based on gaboreye model and radial symmetry operator. In: International Conference on Image Processing, pp. 67–70 (2004)

  34. Yanfang, Z.; Nongliang, S.; Yang, G.; Maoyong, C.: A new eye location method based on Ring Gabor Filter. In: IEEE International Conference on Automation and Logistics, 1–3 Sept. 2008, pp. 301–305 (2008)

  35. Zhang, J.; Tan, T.; Ma, L.: Invariant texture segmentation via circular gabor filters. In: International Conference on Pattern Recognition, pp. 901–904 (2002)

  36. Jain, A.K.; Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24(12), 1167–1186 (1991). doi:10.1016/0031-3203(91)90143-s

    Google Scholar 

  37. De Valois, R.L.; Albrecht, D.G.; Thorell, L.G.: Spatial frequency selectivity of cells in macaque visual cortex. Vis. Res. 22(4), 545–559 (1982). doi:10.1016/0042-6989(82)90113-4

    Google Scholar 

  38. Smallman, H.S.; MacLeod, D.I.; He, S.; Kentridge, R.: Fine grain of the neural representation of human spatial vision. J. Neurosci. 16(4), 1852–1859 (1996)

    Google Scholar 

  39. Mathews, J.H.; Fink, K.D.: Numerical Methods Using MATLAB, 3rd edn. Prentice Hall College Div, New Jersey (1999)

  40. Levin, A.; Lischinski, D.; Weiss, Y.: Colorization usingoptimization. In: Annual Symposium of the ACM SIGGRAPH, Grenoble, France, pp. 689–694 (2004)

  41. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  42. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: 7th IEEE International Conference on Computer Vision, Greece, pp. 975–982 (1999)

  43. Proença, H.; Alexandre, L.A.: The NICE.I: Noisy Iris Challenge Evaluation—Part I. In: 1st IEEE International Conference on Biometrics: Theory, Applications, and Systems, Crystal City (2007)

  44. Daugman, J.: High confidence recognition of persons by iris patterns. In: 2001 IEEE 35th International Carnahan Conference on Security Technology, Oct 2001, pp. 254–263 (2001)

  45. Libor Masek, P.K.: MATLAB source code for a biometric identification system based on iris patterns. The School of Computer Science and Software Engineering, The University of Western Australia (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abduljalil Radman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radman, A., Jumari, K. & Zainal, N. Iris Segmentation in Visible Wavelength Images using Circular Gabor Filters and Optimization. Arab J Sci Eng 39, 3039–3049 (2014). https://doi.org/10.1007/s13369-013-0924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0924-3

Keywords

Navigation