Skip to main content
Log in

Optimization of Lipase-Catalyzed Glycerolysis for Mono and Diglyceride Production Using Response Surface Methodology

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, the application of response surface methodology and central composite design to optimize the reaction variables of glycerolysis for the production of monoglyceride (MG) and diglyceride (DG) was discussed. Using a 24-factorial experimental design, the effects of temperature between 10 and 50 °C, time of 2–6 h, the amount of lipase 0.01–0.3 g, glycerol to oil molar ratio 1:1–3:1, and water content 3.5–9.5 wt% were studied. Contour plots were used to evaluate the optimal conditions for MG and DG production between the independent variables and responses. The highest yield of MG and DG were 38.71 and 39.45 wt%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasi, F.; Cossignani, L.; Simonetti, M.S.; Damiani, P.: Biocatalysed synthesis of sn-1,3-diacylglycerol oil from extra virgin olive oil. Enzym. Microb. Technol. 41, 727–732 (2007)

    Article  Google Scholar 

  2. Ghamgui, H.; Miled, N.; Rehai, A.; Karra-Chaabouni, M.; Gargouri, Y.: Production of mono-olein by immobilized Staphylococcus simulans lipase in a solvent-free system: optimization by response surface methodology. Enzym. Microb. Technol. 39, 717–723 (2006)

    Google Scholar 

  3. Jackson, M.A.; King, J.W.: Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 74, 103–106 (1997)

    Article  Google Scholar 

  4. Damstrup, M.L.; Jensena, T.; Sparsø, F.V.; Kiil, S.Z.; Jensen, A.D.; Xu, X.: Production of heat-sensitive monoacylglycerols by enzymatic glycerolysis in tert-pentanol: process optimization by response surface methodology. J. Am. Oil Chem. Soc. 83, 27–33 (2006)

    Google Scholar 

  5. Singh, A.K.; Mukhopadhyay, M.: Overview of fungal lipase: a review. Appl. Biochem. Biotechnol. 166, 486–520 (2012)

    Google Scholar 

  6. Pawongrat, R.; Xu X.; H-Kittikun, A.: Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chem. 104, 251–258 (2007)

    Google Scholar 

  7. Ndiaye, P.M.; Lanza, M.; Tavares, F.W.; Dariva, C.; Oliveira, D.; Oliveira, J.V.: Phase behavior of olive and soybean oils in compressed propane and n-butane. Braz. J. Chem. Eng. 23, 405–415 (2006)

    Google Scholar 

  8. Ferreira-Dias, S.A.; Correia, C.; Baptista, F.O.; Fonseca, M.M.R.: Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. J. Mol. Catal. B Enzym. 11, 699–711 (2001)

    Google Scholar 

  9. Kasamatsu, T.; Ogura, R.; Ikeda, N.; Motita, O.; Saigo, K.; Watabe, H.; Saito, Y.; Suzuki, H.: Genotoxicity studies on dietary diacylglycerol (DAG) oil. Food Chem. Toxicol. 43, 253–260 (2005)

  10. Nagao, T.; Watanabe, H.; Gotoh, N.; Onizawa, K.; Taguchi, H.; Matsuo, N.; Yasukawa, T.; Tsushima, R.; Shimasaki, H.; Itakura, H.: Dietary diacylglycerol suppress accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J. Nutr. 130, 792–797 (2000)

    Google Scholar 

  11. Singh, A.K.; Mukhopadhyay, M.: Olive oil glycerolysis by immobilized lipase Candida antarctica in solvent free system. Grasas Aceites 63, 202–208 (2012)

    Google Scholar 

  12. Kaewthong, W.; Sirisansaneeyakul, S.; Prasertsan, P.; H-Kittikun, A.: Continuous production of monoacylglycerols by glycerolysis of palm olein by immobilized lipase. Process Biochem. 40, 1525–1530 (2005)

    Google Scholar 

  13. Langone, M.A.P.; De Abreu, M.J.; Rezende, C.; Sant’Anna, Jr., G.L.: Enzymatic synthesis of medium chain M. E. monoglycerides in a solvent-free system. Appl. Biochem. Biotechnol. 98, 987–996 (2002)

    Google Scholar 

  14. Noureddini, H.; Harkey, D.W.; Gutsmanc, M.R.: A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 81, 203–207 (2004)

    Google Scholar 

  15. Yamane, T.; Hoq, M.M.; Itoh, S.; Shimizu, S.: Glycerolysis of fat by lipase. J. Jpn. Oil Chem. Soc. 35, 625–631 (1986)

    Google Scholar 

  16. Weber, N.; Mukeherjee, K.D.: Solvent-free lipase-catalyzed preparation of diacylglycerols. J. Agric. Food Chem. 52, 5347–5353 (2004)

    Google Scholar 

  17. Guo, Z.; Xu, X.: Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further study on the reaction system. Green Chem. 8, 54–62 (2006)

    Google Scholar 

  18. Yahya, A.R.M.; Anderson, W.A.; Moo-Young, M.: Ester synthesis in lipase-catalyzed reactions. Enzym. Microb. Technol. 23, 438–450 (1998)

    Google Scholar 

  19. Pinar, A.M.: Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arab. J. Sci. Eng. 38, 705–714 (2012)

    Google Scholar 

  20. Matlob, A.S.; Kamarudin, R.A.; Jubri, Z.; Ramli, Z.: Using the response surface methodology to optimize the extraction of silica and alumina from coal fly ash for the synthesis of zeolite Na-A. Arab. J. Sci. Eng. 37, 27–40 (2012)

    Google Scholar 

  21. Myer, R.H.; Montgomery, D.C.: Response Surface Methodology. Wiley, New York (2002)

  22. Azargohar, R.; Dalai, A.K.: Production of activated carbon from Luscar char: experimental and modeling studies. Mesopor. Mater. 85, 219–225 (2005)

    Google Scholar 

  23. Yongsheng, R.; Jun, L.; Xiaoxiao, D.: Application of the central composite design and response surface methodology to remove arsenic from industrial phosphorus by oxidation. Can. J. Chem. Eng. 89, 419–498 (2011)

    Google Scholar 

  24. Amin, N.A.S.; Anggoro, D.D.: Optimization of direct conversion of methane to liquid fuels over Cu loaded W/ZSM-5 catalyst. Fuel 83, 487–494 (2004)

    Google Scholar 

  25. Zheng, Y.; Wu, X.M.; White, C.B.; Quan, J.; Zhu, L.M.: Dual response surface-optimized process for feruloylated diacylglycerols by selective lipase-catalyzed transesterification in solvent free system. Bioresour. Technol. 100, 2896–2901 (2009)

    Google Scholar 

  26. Valério, A.; Kruger, R.L.; Ninow, J.; Corazza, F.C.; Oliveira, D.D.; Oliveira, J.V.; Corazza, M.L.: Kinetics of solvent-free lipase-catalyzed glycerolysis of olive oil in surfactant system. J. Agric. Food Chem. 57, 8350–8356 (2009)

    Google Scholar 

  27. Tüter, M.; Aksoy, H.A.: Solvent-free glycerolysis of palm and palm kernel oils catalyzed by commercial 1,3-specific lipase from Humicola lanuginosa and composition of glycerolysis products. Biotechnol. Lett. 22, 31–34 (2000)

    Google Scholar 

  28. Garcia, H.S; Yang, B.; Parkin, K.L.: Continuous reactor for enzymatic glycerolysis of butter oil in the absence of solvent. Food Res. Int. 28, 605–609 (1996)

    Google Scholar 

  29. Yang, T.; Rebsdorf, M.; Engelrud, U.; Xu, X.: Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J. Food Lipids 12, 299–312 (2005)

    Google Scholar 

  30. Noureddini, H.; Harmeier, S.E.: Enzymatic glycerolysis of soybean oil. J. Am. Chem. Soc. 75, 1359–1365 (1998)

    Google Scholar 

  31. Fregolente, P.B.L.; Pinto, G.M.F.; Wolf-Maciel, M.R.; Filho, R.M.: Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Appl. Biochem. Biotechnol. 160, 1879–1887 (2010)

    Google Scholar 

  32. Zeng, F.; Yang, B.; Wang, Y.; Wang, W.; Ning, Z.; Li, L.: Enzymatic production of monoacylglycerols with camellia oil by the glycerolysis reaction. J. Am. Oil Chem. Soc. 87, 531–537 (2010)

    Google Scholar 

  33. Valério, A.; Rovani, S.; Treichel, H.; de Oliveira, D.; Oliveira, J.V.: Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess Biosyst. Eng. 33, 805–812 (2010)

    Google Scholar 

  34. Damstrup, M.L.; Jensen, T.; Sparsø, F.V.; Kiil, S.Z.; Jensen, A.D.; Xu, X.: Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. J. Am. Oil Chem. Soc. 82, 559–564 (2005)

    Google Scholar 

  35. Ferreira-Dias, S.; Fonseca, M.M.R.: Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity. Bioprocess. Eng. 12, 327–337 (1995)

    Google Scholar 

  36. Kaewthong, W.; H-Kittikun, A.: Glycerolysis of palm olein by immobilized lipase PS in organic solvents. Enzym. Microb. Technol. 35, 218–222 (2004)

    Google Scholar 

  37. McNeill, G.P.; Shimizu, S.; Yamane, T.: Enzymatic glycerolysis of beef tallow resulting in a high yield of monoglyceride. J. Am. Oil Chem. Soc. 67, 779–783 (1991)

    Google Scholar 

  38. Elfman-Borjesson, I.; Harrod, M.: Synthesis of monoglycerides by glycerolysis of rapeseed oil using immobilized lipase. J. Am. Oil Chem. Soc. 76, 701–707 (1999)

    Google Scholar 

  39. Stevenson, D.E.; Stanley, R.A.; Furneaux, R.H.: Glycerolysis of tallow with immobilized lipase. Biotechnol. Lett. 15, 1043–1048 (1993)

    Google Scholar 

  40. Zhong, N.; Li, L.; Xu, X.; Cheong, L.; Li, B.; Hu, S.; Zhao, X.: An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis. J. Am. Oil Chem. Soc. 86, 783–789 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Mukhopadhyay, M. Optimization of Lipase-Catalyzed Glycerolysis for Mono and Diglyceride Production Using Response Surface Methodology. Arab J Sci Eng 39, 2463–2474 (2014). https://doi.org/10.1007/s13369-013-0919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0919-0

Keywords

Navigation