Skip to main content

Advertisement

Log in

Development of an Automatic Calibration Tool Using Genetic Algorithm for the ARNO Conceptual Rainfall-Runoff Model

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Rainfall-runoff simulation is one of the key steps in hydrology. Conceptual models are frequently used in rainfall-runoff simulation. However, a major difficulty in practice remains on how to optimize the parameters of the model. This is often a time-consuming and labor-intensive task for the modeler when manual calibration is adopted together with employing the knowledge of the model structure and parameters. In this study, an automatic calibration tool was developed to calibrate the ARNO conceptual rainfall-runoff model using the simple genetic algorithm (SGA). SGA is a simple, powerful, and popular optimization method, which explores the search space for the global optimum and has been successfully employed in many optimizations problems. The ARNO model was calibrated automatically for rainfall-runoff simulation of the Pataveh basin, which is a sub-basin of Karun River basin in Iran. The simulation performance of the model was evaluated on the basis of various performance criteria. Efficiency coefficient and coefficient of determination reached values higher than 0.80 during calibration and validation. The values of the remaining performance statistics were acceptable. The results show that this model with employed automatic calibration tool can successfully be used for continuous rainfall-runoff simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

A parameter representing spatial distribution of the soil moisture capacity

B :

Base flow

B–C:

Blaney and Criddle method

c :

Exponent used to represent drainage when saturation is not reached

C :

A small integer

CE:

Coefficient of efficiency

D :

Drainage

D max :

Maximum drainage that should be expected when the soil is completely saturated

D min :

A drainage parameter

EOPT:

An objective function

\({{\rm E\overline Q} }\) :

Percentage error of mean discharge

\({{\rm E\overline {Qp}}}\) :

Percentage error of mean annual peak discharges

ESD:

Percentage error of standard deviation

ESkew:

Percentage error of skewness

ETa :

Actual evapotranspiration

ET0:

Reference evapotranspiration

ET0H-S :

Hargreaves and Samani ET0

ET0P-M :

Penman-Monteith ET0

ETp :

Potential evapotranspiration

f′:

Scaled fitness function

GA:

Genetic algorithm

H–S:

Hargreaves and Samani method

I :

Percolation

I s :

Maximum percolation should be expected when the soil is completely saturated

K :

Number of calibration years

l :

Length of a gene

L :

Chromosome length

m :

Number of years in period of model performance evaluation

M e :

Effective meteorological input

N :

Population size

n :

Number of days in period of model performance evaluation

OBF:

An objective function

P :

Precipitation

P c :

Crossover probability

P m :

Mutation probability

P–M:

Penman-Monteith method

\({\overline {Q_{\rm obs}} }\) :

Average observed flow over the considered period

Q obs(t):

Observed flow

\({\overline {Qp_{\rm obs} } }\) :

Mean annual observed peak discharges

\({\overline {Qp_{\rm sim} } }\) :

Mean annual simulated peak discharges

\({\overline {Q_{\rm sim}} }\) :

Average simulated flow

Q sim(t):

Simulated flow

R :

Surface runoff

R 2 :

Coefficient of determination

SD (Q obd) :

Standard deviation of observed runoff

SD (Q sim):

Standard deviation of simulated runoff

SGA:

Simple genetic algorithm

S G :

Generic pervious surface area at saturation

S I :

Basin impervious area

Skew (Q obs):

Skewness of observed runoff

Skew(Q sim):

Skewness of simulated runoff

S P :

Basin pervious area

S T :

Basin surface area (excluding the surface extent of water bodies such as reservoirs or lakes)

Th:

Thornthwaite method

U max :

Upper limit of the parameter

U min :

Lower limit of the parameter

V obs :

Observed flow volume

V sim :

Simulated flow volume

w :

Elementary area soil moisture at saturation

W :

Basin average soil moisture content

W d :

Moisture content threshold value in drainage calculation

W i :

Moisture content threshold value below which the percolation is negligible

w m :

Maximum possible soil moisture in any elementary area of the basin

W m :

Basin average soil moisture content at saturation

x :

Proportion of pervious area at saturation

Δt:

Time step

μ OBF :

Average of the OBF of all the chromosomes in the population

μ OBF (90 %) :

Average of the OBF values of 90 % of best chromosomes in the population

π :

Precision of the parameter in parameter estimation

σ OBF :

Standard deviation of the OBF of all the chromosomes in the population

σ OBF (90 %) :

Standard deviation of the OBF values of 90 % of best chromosomes in the population

References

  1. Littlewood I.G. et al.: Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: two Brazilian catchments. Environ. Model. Softw. 22(11), 1229–1239 (2007)

    Article  Google Scholar 

  2. Vrugt J.A. et al.: Application of stochastic parameter optimization to the Sacramento soil moisture accounting model. J. Hydrol. 325(1–4), 288–307 (2006)

    Article  Google Scholar 

  3. Kokkonen T.S., Jakeman A.J.: A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications. Water Resour. Res. 37(11), 2345–2352 (2007)

    Google Scholar 

  4. Cooper V.A., Nguyen V.T.V., Nicell J.A.: Calibration of conceptual rainfall-runoff models using global optimisation methods with hydrologic process-based parameter constraints. J. Hydrol. 334(3–4), 455–466 (2007)

    Article  Google Scholar 

  5. Duan Q.Y., Sorooshian S., Gupta V.: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28(4), 1015–1031 (1992)

    Article  Google Scholar 

  6. Kamali M., Ponnambalam K., Soulis E.D.: Computationally efficient calibration of WATCLASS Hydrologic models using surrogate optimization. Hydrol. Earth Syst. Sci. Discuss. 4(4), 2307–2321 (2007)

    Article  Google Scholar 

  7. Tang Y., Reed P., Wagener T.: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?. Hydrol. Earth Syst. Sci. 10(2), 289–307 (2006)

    Article  Google Scholar 

  8. Sorooshian, S.; Gupta, V.K.: Model calibration. Computer Models of Watershed Hydrology. p. 23–68. Water Resources Publications: Colorado (1995)

  9. Wong S.C., Wong C.K., Tong C.O.: A parallelized genetic algorithm for the calibration of Lowry model. Parallel Comput. 27(12), 1523–1536 (2001)

    Article  MATH  Google Scholar 

  10. Liu S.M. et al.: Using genetic algorithms to calibrate a water quality model. Sci. Total Environ. 374(2–3), 260–272 (2007)

    Article  Google Scholar 

  11. Wang Q.J.: The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resour. Res. 27(11), 2467–2471 (1991)

    Article  Google Scholar 

  12. Sorooshian S., Duan Q., Gupta V.K.: Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resour. Res. 29(4), 1185–1194 (1993)

    Article  Google Scholar 

  13. Cooper V.A., Nguyen V.T.V., Nicell J.A.: Evaluation of global optimization methods for conceptual rainfall-runoff model calibration. Water Sci. Technol. 36(5), 53–60 (1997)

    Article  Google Scholar 

  14. Yapo P.O., Gupta H.V., Sorooshian S.: Multi-objective global optimization for hydrologic models. J. Hydrol. 204(1–4), 83–97 (1998)

    Article  Google Scholar 

  15. Lin G.F., Wang C.M.: A nonlinear rainfall-runoff model embedded with an automated calibration method. Part 2: The automated calibration method. J. Hydrol. 341(3–4), 196–206 (2007)

    Article  Google Scholar 

  16. Franchini M., Galeati G.: Comparing several genetic algorithm schemes for the calibration of conceptual rainfall-runoff models. Hydrol. Sci. J. 42(3), 357–379 (1997)

    Article  Google Scholar 

  17. Franchini M.: Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. Hydrol. Sci. J. 41(1), 21–39 (1996)

    Article  Google Scholar 

  18. Wang Q.J.: Using genetic algorithms to optimise model parameters. Environ. Model. Softw. 12(1), 27–34 (1997)

    Article  MATH  Google Scholar 

  19. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Reading, Mass.: Addison-Wesley Pub. Co. xiii, p. 412 (1989)

  20. Zhao, R.J.: Flood forecasting method for humid regions of China. East China College of Hydraulic Engineering, Nanjing (1977)

  21. Todini, E.: Il modello afllussi deflussi del fiume Amo. Relazione Generale dello studio per conto della Regione Toscana, in Tech. Report. Bologna (1988)

  22. Dümenil, L.; Todini, E.: A rainfall-runoff scheme for use in the Hamburg climate model. McGraw Hil: New York. pp. 462–462 (1992)

  23. Todini E.: The ARNO rainfall-runoff model. J. Hydrol. 175(1–4), 339–382 (1996)

    Article  Google Scholar 

  24. Al-Zahrani, M.A.: Moied, K.: Optimizing water quality monitoring stations using genetic algorithms. Arab. J. Sci. Eng. 28(1B), 57–75 (2003)

    Google Scholar 

  25. Durairaj S., Devaraj D.: Reactive power dispatch incorporating thyristor controlled series capacitors using improved genetic algorithm. Arab. J. Sci. Eng. 34(1B), 173–185 (2009)

    Google Scholar 

  26. Jian-Xia C., Qiang H., Yi-min W.: Genetic algorithms for optimal reservoir dispatching. Water Resour. Manag. 19(4), 321–331 (2005)

    Article  Google Scholar 

  27. Coley, D.A.: An introduction to genetic algorithms for scientists and engineers. Singapore; River Edge, NJ: World Scientific. xvi, p. 227 (1999)

  28. Katari V. et al.: Hybridized improved genetic algorithm with variable length chromosome for image clustering. Int. J. Comput. Sci. Netw. Secur. 7(11), 121–131 (2007)

    Google Scholar 

  29. Goldberg, D.: Sizing populations for serial and parallel genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms. p. 70 (1989)

  30. Cheng C.T. et al.: Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. J. Hydrol. 316(1–4), 129–140 (2006)

    Article  Google Scholar 

  31. Nash J.E., Sutcliffe J.V.: River flow forecasting through conceptual models part I. A discussion of principles. J. Hydrol. 10(3), 282–290 (1970)

    Google Scholar 

  32. Servat E., Dezetter A.: Selection of calibration objective functions in the context of rainfall-runoff modeling in a Sudanese Savannah area. Hydrol. Sci. J. 36(4), 307–330 (1991)

    Article  Google Scholar 

  33. Loukas A., Vasiliades L., Dalezios N.R.: Potential climate change impacts on flood producing mechanisms in southern British Columbia, Canada using the CGCMA1 simulation results. J. Hydrol. 259(1–4), 163–188 (2002)

    Article  Google Scholar 

  34. Dumitrescu, D.: Evolutionary computation CRC press international series on computational intelligence. CRC Press: Boca Raton (2000)

  35. Boughton W.: Calibrations of a daily rainfall-runoff model with poor quality data. Environ. Model. Softw. 21(8), 1114–1128 (2006)

    Article  Google Scholar 

  36. Nathan, R.J.; McMahon, T.A.: The SFB model part I. Validation of fixed model parameters, in Civil Engineering Transactions CE32 (3). Institution of Engineers, Australia. pp. 157–161 (1990)

  37. Nathan, R.J.; McMahon, T.A.: The SFB model part II. Operational considerations in Civil Engineering Transactions CE32 (3). Institution of Engineers, Australia. pp. 162–166 (1990)

  38. Boughton, W.; Chiew, F.: Calibrations of the AWBM for use on ungauged catchments, in Technical Report 03/15. CRC for Catchment Hydrology. Monash University. p. 37 (2003)

  39. Kherabi, J.; et al.: Comparative Study of the Penman-Monteith and FAO 24 Methods in Iran. Iran National Committee on Irrigation and Drainage (2002)

  40. Allen, R.G.; et al.: Crop evapotranspiration guidelines for computing crop water requirements FAO Irrigation and Drainage Paper 56. Rome (1998)

  41. Blaney, H.F.; Criddle, W.D.: Determining water requirements in irrigated areas from climatological and irrigation data USDA Soil Conservation Service SCS-TP96. (1950)

  42. Thornthwaite C.W.: An approach toward a rational classification of climate. Geograph. Rev. 38, 55–94 (1948)

    Article  Google Scholar 

  43. Hargreaves G.H., Samani Z.A.: Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1(2), 96–99 (1985)

    Article  Google Scholar 

  44. Zhang G.P., Savenije H.H.G.: Rainfall-runoff modelling in a catchment with a complex groundwater flow system: application of the Representative Elementary Watershed (REW) approach. Hydrol. Earth Syst. Sci. 9(3), 243–261 (2005)

    Article  Google Scholar 

  45. Evans J., Schreider S.: Hydrological impacts of climate change on inflows to Perth, Australia. Clim. Change 55(3), 361–393 (2002)

    Article  Google Scholar 

  46. Loukas A., Vasiliades L., Dalezios N.: Climate change implications on flood response of a mountainous watershed. Water Air Soil Pollut. Focus 4(4), 331–347 (2004)

    Article  Google Scholar 

  47. Nourani V., Mano A.: Semi-distributed flood runoff model at the subcontinental scale for southwestern Iran. Hydrol. Process. 21(27), 3173–3180 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Khazaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khazaei, M.R., Zahabiyoun, B., Saghafian, B. et al. Development of an Automatic Calibration Tool Using Genetic Algorithm for the ARNO Conceptual Rainfall-Runoff Model. Arab J Sci Eng 39, 2535–2549 (2014). https://doi.org/10.1007/s13369-013-0903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0903-8

Keywords

Navigation