Skip to main content
Log in

Eulerian–Lagrangian Numerical Scheme for Contaminant Removal from Different Cavity Shapes

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present article we present computational investigations of fluid–solid interaction flow. Such fluid–solid interaction flow was created in three different cavity shapes on the floor of a horizontal channel. The flow and solid particle dynamics were explored using cubic interpolated pseudo-particle method and Lagrangian scheme of Newton’s law, respectively, for two objectives. The first is to demonstrate the validity of the proposed Eulerian–Lagrangian in predicting the main characteristics of fluid–solid interaction flow. The second objective is to shed light on the dynamics of the solid particle that are present in the three types of cavities, which has not been fully covered in the literature. The results show that the particles’ trajectories are critically dependent on the magnitude of Reynolds numbers and the vortex behavior in the cavity. We also found that the highest rate of removal occurs in the early penetration of flow into the cavity, especially for the triangular cavity. Good comparisons with the previous studies demonstrate the multidisciplinary applications of this scheme.

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayashi, H.; Kubo, S.: Computer simulation study on filtration of soot particles in diesel particulate filter. Comp. Math. App. 55(7), 1450–1460 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rockwell, D.; Lin, J.C.; Oshkai, P.; Reiss, M.; Pollack, M.: Shallow cavity flow tone experiments: onset of locked-on states. J. Fluids. Struct. 17(3), 381–414 (2003)

    Article  Google Scholar 

  3. Xu, B.H.; Yu, A.B.: Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci. 52(16), 2785–2809 (1997)

    Google Scholar 

  4. Mesalhy, O.M.; Abdel Aziz, S.S.; El- Sayed, M.M.: Flow heat transfer over shallow cavities. Int. J. Thermal Sci. 49(3), 514–521 (2010)

  5. Zdanski, P.S.B.; Ortega, M.A.; Nide, G.C.R., Fico, J.: On the flow over cavities of large aspect ratio: a physical analysis. Int. Commun. Heat Mass Transf. 33(4), 458–466 (2006)

    Google Scholar 

  6. Kang, W.; Sung, H.J.: Large-scale structures of turbulent flows over an open cavity. J. Fluids Struct. 25(8), 1318–1333 (2009)

    Google Scholar 

  7. Ozalp, C.; Pinarbasi, A.; Sahin, B.: Experimental measurement of flow past cavities of different shapes. Exp. Thermal Fluid Sci. 34(5), 505–515 (2010)

    Google Scholar 

  8. Li, S.L.; Yi, C.C.; Chao, A.L.: Multi relaxation time lattice Boltzmann simulations of deep lid driven cavity flows at different aspect ratios. Comput. Fluids 45(1), 233–240 (2011)

    Google Scholar 

  9. Arlindo, D.M.; Francisco, A.A.P.; Aristeu, S.N.: Large-eddy simulation of turbulent flow over a two dimensional cavity with temperature fluctuations. Int. J. Heat Mass Transf. 42(1), 49–59 (1999)

    Google Scholar 

  10. Stiriba, Y.: Analysis of the flow and heat transfer characteristics for assisting incompressible laminar flow past an open cavity. Int. Commun. Heat Mass Transf. 35(8), 901–907 (2008)

    Google Scholar 

  11. Yapici, K.; Karasozen, B.; Uludag, Y.: Finite volume simulation of viscoelastic laminar flow in a lid- driven cavity. J. Non Newton. Fluids Mech. 164(1), 51–65 (2009)

    Google Scholar 

  12. Yang, Y.; Rockwell, D.; Cody, K.L.F.; Pollack, M.: Generation of tones due to flow past a deep cavity: Effect of streamwise length. J. Fluids Struct. 25(2), 364–388 (2009)

    Google Scholar 

  13. Ekmekci, A.; Rockwell, D.: Oscillation of shallow flow past a cavity: Resonant coupling with a gravity wave. J. Fluids Struct. 23(6), 809–838 (2007)

    Google Scholar 

  14. Zaki, M.M.; Nirdosh, I.; Sedahmed, G.H.: Mass transfer inside conical cavities under transverse laminar flow. Chem. Eng. Process. Process Intensif. 44(12), 1306–1311 (2005)

    Google Scholar 

  15. Fang, L.C.; Nicolaou, D.; Cleaver, J.W.: Transient removal of a contaminated fluid from a cavity. Int. J. Heat Fluid Flow 20(6), 605–613 (1999)

    Google Scholar 

  16. Patil, D.V.; Lakshmisha, K.N.; Rogg, B.: Lattice Boltzmann simulation of lid-driven flow in deep cavities. Comput. Fluids 35(10), 1116–1125 (2006)

    Google Scholar 

  17. Stiriba, Y.; Grau F.X.; Ferre J.A.; Vernet, A.: A numerical study of three-dimensional laminar mixed convection past an open cavity. Int. J. Heat Mass Transf. 53(21), 4797–4808 (2010)

    Google Scholar 

  18. Tsorng, S.J.; Capart, H.; Lai, J.S.; Young, D.L.: Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow. Exp. Fluids 40(2), 314–328 (2006)

    Google Scholar 

  19. Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23(1), 261–304 (1991)

    Google Scholar 

  20. Han, M.; Kim, C.; Kim, M.; Lee, S.: Particle migration in tube flow of suspensions. J. Rheo. 43(5), 1157–1174 (1999)

    Google Scholar 

  21. Matas, J.P.; Morris, J.F.; Guazzelli, E.: Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515(1), 171–195 (2004)

    Google Scholar 

  22. Ushijima, S.; Tanaka, N.: Three-dimensional particle tracking velocimetry with laser-light sheet scannings. Fluid Eng. 118(2), 352–357 (1996)

    Google Scholar 

  23. Ide, K.; Ghil, M.: Extended Kalman filtering for vortex system. Dyn. Atm. Oceans 27(1), 301–332 (1997)

    Google Scholar 

  24. Hu, C.C.: Analysis of motility for aquatic sperm in videomicroscopy, PhD. Thesis, National Taiwan University, Taiwan (2003)

  25. Liao, J.I.: Trajectory and velocity determination by smoother, PhD Thesis, National Taiwan University, Taiwan (2002)

  26. Kosinki, P.; Kosinska, A.; Hoffmann, A.F.: Simulation of solid particles behavior in a driven cavity flow. Pow. Tech. 191(3), 327–339 (2009)

    Google Scholar 

  27. Ilea, C.G.; Kosinski, P.; Hoffmann, A.C.: Three-dimensional of a dust lifting process with varying parameters. J. Multiph. Flow 34(9), 869–878 (2008)

    Google Scholar 

  28. Kosinski, P.; Hoffmann, A.C.: An extension of the hard-sphere particle-particle collision model to study agglomeration. Chem. Eng. Sci. 65(10), 3231-3239 (2010)

    Google Scholar 

  29. Takewaki, H.; Nishigushi, A.; Yabe, T.: Cubic interpolated pseudo particle method for solving hyperbolic type equations. J. Comput. Phys. 61(2), 261–268 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nor Azwadi, C.S.; Mohd Rosdzimin, A.R.; Al-Mola, M.H.: Contrained interpolated profile for solving BGK Boltzmann equation. Eur. J. Sci. Res. 35(4), 559-569 (2009)

    Google Scholar 

  31. Yabe, T.; Aoki, T.: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Comput. Phys. Commun. 66(2), 219–232 (1991)

    Google Scholar 

  32. Nor Azwadi, C.S.; Mohd Rosdzimin, A.R.: Cubic interpolated pseudo particle (CIP)—thermal BGK lattice Boltzmann numerical scheme for solving incompressible thermal fluid flow problem. Malay. J. Math. Sci. 3(2), 183–202 (2009)

    Google Scholar 

  33. Chilukuri, R.; Middleman, S.: Circulation, diffusion and reaction within a liquid trapped in a cavity. Chem. Eng. 22(3), 127–138 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Azwadi Che Sidik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Che Sidik, N.A., Salehi, M. Eulerian–Lagrangian Numerical Scheme for Contaminant Removal from Different Cavity Shapes. Arab J Sci Eng 39, 3181–3189 (2014). https://doi.org/10.1007/s13369-013-0886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0886-5

Keywords

Navigation