Arabian Journal for Science and Engineering

, Volume 39, Issue 3, pp 2251–2261 | Cite as

MHD Mixed Convection Stagnation-Point Flow Over a Stretching Vertical Plate in Porous Medium Filled with a Nanofluid in the Presence of Thermal Radiation

  • Mohammad Eftekhari Yazdi
  • Abed Moradi
  • Saeed DinarvandEmail author
Research Article - Mechanical Engineering


This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid and in the presence of thermal radiation. The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. By means of similarity transformation, the governing partial differential equations are reduced into ordinary differential equations. The similarity equations were solved for three types of nanoparticles, namely copper, alumina and titania with water as the base fluid, to investigate the effect of the nanoparticle volume fraction parameter φ, the constant magnetic/porous medium parameter Λ, the mixed convection parameter λ, the Prandtl number Pr and the radiation parameter R d on the flow and heat transfer characteristics. The skin-friction coefficient and Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters are presented graphically and discussed. Effects of the solid volume fraction on both of assisting and opposing flows on the flow and heat transfer characteristics are thoroughly examined. It is observed that, for all three nonoparticles, the magnitude of the skin friction coefficient and local Nusselt number increases with the nanoparticle volume fraction φ for both cases of buoyant assisting and opposing flows. In addition, the velocity of fluid increases in case of assisting flow by decreasing Λ and Pr but the opposite trend is noted in the opposing flows. A similar effect on the velocity is observed when λ and R d increases and the temperature increase by increasing Λ and R d in both cases of buoyant assisting and opposing flows. The highest values of the skin friction coefficient and the local Nusselt number was obtained for the Cu nanoparticles compared to Al2O3 and TiO2.


MHD mixed convection Stagnation-point flow Stretching vertical plate Nanofluid Porous medium Thermal radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hiemenz K.: Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom einge-tauchten graden Kreiszylinder. Dinglers Polytech. J. 326, 321–324 (1911)Google Scholar
  2. 2.
    Homann F.: Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel. Z. Angew. Math. Mech. 16, 153–164 (1936)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mahapatra T.R., Gupta A.S.: Heat transfer in stagnation-point towards a stretching sheet. Heat Mass Transf. 38, 517–521 (2002)CrossRefGoogle Scholar
  4. 4.
    Nazar R., Amin N., Filip D., Pop I.: Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int. J. Eng. Sci. 42, 1241–1253 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Nield, D.A.; Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)Google Scholar
  6. 6.
    Ingham, D.B.; Pop, I. (eds.): Transport Phenomena in Porous Media, vol. II 2002, Pergamon, Oxford (1998)Google Scholar
  7. 7.
    Ingham, D.B.; Pop, I. (eds.): Transport Phenomena in Porous Media. vol. III, Elsevier, Oxford (2005)Google Scholar
  8. 8.
    Vafai, K. (ed.): Handbook of Porous Media. Marcel Dekker, New York (2000)Google Scholar
  9. 9.
    Vafai, K.: Handbook of Porous Media. 2nd edn. Taylor and Francis, New York (2005)Google Scholar
  10. 10.
    Pop, I.; Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)Google Scholar
  11. 11.
    Ingham, D.B.; Bejan, A.; Mamut, E.; Pop, I. (eds.): Emerging Technologies and Techniques in Porous Media. Kluwer, Dordrecht (2004)Google Scholar
  12. 12.
    Bejan, A.; Dincer, I.; Lorente, S.; Miguel, A.F.; Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)Google Scholar
  13. 13.
    Kang H., Kim S.H., Oh J.M.: Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp. Heat Transf. 19(3), 181–191 (2006)CrossRefGoogle Scholar
  14. 14.
    Velagapudi V., Konijeti R.K., Aduru C.S.K.: Empirical correlation to predict thermophysical and heat transfer characteristics of nanofluids. Therm. Sci. 12(2), 27–37 (2008)CrossRefGoogle Scholar
  15. 15.
    Turgut A. et al.: Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids. Int. J. Thermophys. 30(4), 1213–1226 (2009)CrossRefGoogle Scholar
  16. 16.
    Rudyak V.Y., Belkin A.A., Tomilina E.A.: On the thermal conductivity of nanofluids. Tech. Phys. Lett. 36(7), 660–662 (2010)CrossRefGoogle Scholar
  17. 17.
    Murugesan C., Sivan S.: Limits for thermal conductivity of nanofluids. Therm. Sci. 14(1), 65–71 (2010)CrossRefGoogle Scholar
  18. 18.
    Nayak A.K., Singh R.K., Kulkarni P.P.: Measurement of volumetric thermal expansion coefficient of various nanofluids. Tech. Phys. Lett. 36(8), 696–698 (2010)CrossRefGoogle Scholar
  19. 19.
    Bachok N., Ishak A., Nazar R., Pop I.: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B 405, 4914–4918 (2010)CrossRefGoogle Scholar
  20. 20.
    Bachok N., Ishak A., Pop I.: Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Res. Lett. 6, 623–631 (2011)CrossRefGoogle Scholar
  21. 21.
    Arifin N., Nazar R., Pop I.: Viscous flow due to a permeable stretching/shrinking sheet in a nanofluid. Sains Malaysiana 40(12), 1359–1367 (2011)Google Scholar
  22. 22.
    Ahmad S., Pop I.: Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int. Comm. Heat Mass Transf. 37, 987–991 (2010)CrossRefGoogle Scholar
  23. 23.
    Nield D.A., Kuznetsov A.V.: The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kuznetsov A.V., Nield D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)CrossRefGoogle Scholar
  25. 25.
    Gbadeyan J.A., Olanrewaju M.A., Olanrewaju P.O.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition in the presence of magnetic field and thermal radiation. Aust. J. Basic Appl. Sci. 5(9), 1323–1334 (2011)Google Scholar
  26. 26.
    Olanrewaju P.O., Olanrewaju M.A., Adesanya A.O.: Boundary layer flow of nanofluids over a moving surface in a flowing fluid in the presence of radiation. Int. J. Appl. Sci. Technol. 2(1), 122–131 (2012)Google Scholar
  27. 27.
    Akbarinia A., Behzadmehr A.: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes. Appl. Therm. Eng. 27, 1327–1337 (2007)CrossRefGoogle Scholar
  28. 28.
    Mirmasoumi S., Behzadmehr A.: Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl. Therm. Eng. 28, 717–727 (2008)CrossRefGoogle Scholar
  29. 29.
    Abu-Nada E., Chamkha A.J.: Mixed convection flow in a lid-driven square enclosure filled with a nanofluid. Eur. J. Mech. B/Fluids 29(6), 472–482 (2010)CrossRefzbMATHGoogle Scholar
  30. 30.
    Oztop H.F., Abu-Nada E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)CrossRefGoogle Scholar
  31. 31.
    Tiwari R.J., Das M.K.: Heat transfer augmentation in two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)CrossRefzbMATHGoogle Scholar
  32. 32.
    Hayat T., Abbas Z., Pop I., Asghar S.: Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int. J. Heat Mass Transf. 53, 466–474 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  • Mohammad Eftekhari Yazdi
    • 1
  • Abed Moradi
    • 1
  • Saeed Dinarvand
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringIslamic Azad UniversityTehranIran
  2. 2.Young Researchers and Elite ClubIslamic Azad UniversityTehranIran

Personalised recommendations