Arabian Journal for Science and Engineering

, Volume 39, Issue 3, pp 2331–2338 | Cite as

Study of Physical Aspects of Rarefied Gas Flow Through Micro/Nano Scale Channels Using DSMC

  • Abdolrasoul Rangrazi
  • Ehsan Roohi
  • Hassan Akhlaghi
Research Article - Mechanical Engineering

Abstract

Rarefied gas flow through micro/nano electro mechanical systems does not perform exactly as that in macro-scale devices. The main goal of this study was to investigate mixed subsonic–supersonic flows in micro/nano channels and to provide physical descriptions on their behaviours. We use DSMC method as a reliable numerical tool to extend our simulation because it provides accurate solution for the Boltzmann equations over the entire range of rarefied flow regime or Knudsen numbers. As is known, the appearance of oblique/normal shocks at the inlet of a channel adds to the complexity of internal flow field analyses. We found some very unique physical aspects of micro/nano flows including mixed supersonic–subsonic flow regimes in constant area ducts and the attenuation of emitted shocks, which are attributed to the strong viscous forces and dominant rarefaction effects at micro/nano scales.

Keywords

DSMC Micro/nano channel Rarefied flow Shock wave Mixed supersonic/subsonic flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pong, K.C.; Ho, C.M.; Liu, J.Q.; Tai, Y.C.: Nonlinear pressure distribution in uniform micro-channels. In: Proceeding of ASME Application of Microfabrication to Fluid Mechanics (FED), vol. 197, pp. 51–56 (1994)Google Scholar
  2. 2.
    Ho, C.; Tai, Y.: Micro-electro-mechanical systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579–612 (1998)Google Scholar
  3. 3.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)Google Scholar
  4. 4.
    Oh, C.K.; Oran, E.S.; Cybyk, B.Z.: Microchannel flow computed with DSMC-MLG. AIAA Paper 95-2090 (1995)Google Scholar
  5. 5.
    Le, M.; Hassan, I.: Simulation of heat transfer in high speed microflows. Appl. Therm. Eng. 26, 2035–2044 (2006)Google Scholar
  6. 6.
    Le, M.; Hassan, I.; Esmail, N.: The effects of outlet boundary conditions on simulating supersonic microchannel flows using DSMC. Appl. Therm. Eng. 27, 21–30 (2007)Google Scholar
  7. 7.
    Titov E.V., Levin D.A.: Extension of DSMC method to high pressure flows. Int. J. Comput. Fluid Dyn. 21(9–10), 351–368 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Liou W.W., Fang Y.C.: Implicit boundary conditions for direct simulation Monte Carlo method in MEMS flow predictions. Comput. Model. Eng. Sci. 1, 119–128 (2000)Google Scholar
  9. 9.
    Fang, Y.; Liou, W.W.: Computations of the flow and heat transfer in microdevices using DSMC with implicit boundary conditions. J. Heat Transf. 124, 338–345 (2002)Google Scholar
  10. 10.
    Roohi, E.; Darbandi, M.: Extending the Navier–Stokes solutions to transition regime in two-dimensional micro and nanochannel flows using information preservation scheme. Phys. Fluids 21, 082001-13 (2009)Google Scholar
  11. 11.
    Roohi, E.; Darbandi, M.; Mirjalili, V.: Direct simulation of Monte Carlo solution of subsonic flow through micro/nanoscale channels. J. Heat Transf. 131, 092402-10 (2009)Google Scholar
  12. 12.
    Alexeenko, A.A.; Levin, D.A.; Gimelshein, S.F.; Collins, R.J.; Reed, B.D.: Numerical modelling of axisymmetric and three-dimensional flows in microelectromechanical systems nozzles. AIAA J. 40(5), 897–904 (2002)Google Scholar
  13. 13.
    Louisos, W.F.; Hitt, D.L.: Optimal expander angle for viscous supersonic flow in 2D micro-nozzles. AIAA Paper 2005-5032 (2005)Google Scholar
  14. 14.
    Alexeenko, A.; Fedosov, D.A.; Gimelshein, S.F.; Levin, D.A.; Collins, R.J.: Transient heat transfer and gas flow in a MEMS-based thruster. J. Microelectromech. Syst. 15(1), 181–194 (2006)Google Scholar
  15. 15.
    Liu, M.; Zhang, X.; Zhang, G.; Chen, Y.: Study on micronozzle flow and propulsion performance using DSMC and continuum methods. Acta Mech. Sin. 22, 409–416 (2006)Google Scholar
  16. 16.
    Xie, C.: Characteristics of micronozzle gas flows. Phys. Fluids 19, 037102 (2007)Google Scholar
  17. 17.
    Xu, J.; Zhao, C.: Two-dimensional numerical simulations of shock waves in micro convergent–divergent nozzles. Int. J. Heat Mass Transf. 50, 2434–2438 (2007)Google Scholar
  18. 18.
    Louisos, W.F.; Alexeenko, A.A.; Hitt, D.L.; Zilić, A.: Design considerations for supersonic micronozzles. Int. J. Manuf. Res. 3(1), 80–113 (2008)Google Scholar
  19. 19.
    Kloss, Y.Y.; Tcheremissine, F.G.; Shuvalov, P.V.: Solving Boltzmann equation for unsteady flows with shock waves in narrow channels. Comput. Math. Math. Phys. 50(6), 1148–1158 (2010)Google Scholar
  20. 20.
    Anikin, Y.A.; Derbakova, E.P.; Dodulad, O.I.; Kloss, Y.Y.; Martynov, D.V.; Rogozin, O.A.; Shuvalov, P.V.; Tcheremissine, F.G.: Computing of gas flows in micro- and nanoscale channels on the base of the Boltzmann kinetic equation. Procedia Comput. Sci. 1(1), 735–744 (2010)Google Scholar
  21. 21.
    Beriache, M.; Bettahar, A.; Naji, H.; Loukarfi, L.; Mokhtar Saïdia, L.: Fluid flow and thermal characteristics of a minichannel heat sink with impinging air flow. Arab. J. Sci. Eng. 37(8), 2243–2254 (2012)Google Scholar
  22. 22.
    Sidik, N.A.; Sahat, I.M.: Finite difference and cubic interpolated profile lattice Boltzmann method for prediction of two-dimensional lid-driven shallow cavity flow. Arab. J. Sci. Eng. 37(4), 1101–1110 (2012)Google Scholar
  23. 23.
    Sidik, N.A.; Sahat, I.M.: Mesoscale numerical prediction of fluid flow in a shear driven cavity. Arab. J. Sci. Eng. 37(6), 1723–1735 (2012)Google Scholar
  24. 24.
    Darbandi, M.; Schneider, G.E.: Momentum variable procedure for solving compressible and incompressible flows. AIAA J. 35, 1801–1805 (1997)Google Scholar
  25. 25.
    Vakilipour, S.; Darbandi, M.: Advancement in numerical study of gas flow and heat transfer in microchannels. J. Thermophys. Heat Transf. 23(1), 205–208 (2009)Google Scholar
  26. 26.
    Darbandi, M.; Vakilipour, S.: Solution of thermally developing zone in short micro/nano scale channels. J. Heat Transf. 131, 044501 (2009)Google Scholar
  27. 27.
    Scanlon, T.; Roohi, E.; White, C.; Darbandi, M.; Reese, J.: An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Comput. Fluids 39, 2078–2089 (2010)Google Scholar
  28. 28.
    Darbandi, M.; Roohi, E.: Study of subsonic/supersonic gas flow through micro/nanoscale nozzles using unstructured DSMC solver. Microfluid. Nanofluid. 10, 321–335 (2011)Google Scholar
  29. 29.
    Darbandi, M.; Roohi, E.: DSMC simulation of subsonic flow through nanochannels and micro/nano backward-facing steps. Int. Commun. Heat Mass Transf. 38, 1444–1449 (2011)Google Scholar
  30. 30.
    Akhlaghi, H.; Roohi, E.; Stefanov, S.: A new iterative wall heat flux specifying technique in DSMC for heating/cooling simulations of MEMS/NEMS. Int. J. Therm. Sci. 56, 111–125 (2012)Google Scholar
  31. 31.
    Ejtehadi, O.; Roohi, E.; Abolfazli, J.: Investigation of basic molecular gas structure effects on hydrodynamics and thermal behaviors of rarefied shear driven flow using DSMC. Int. Commun. Heat Mass Transf. 39, 439–448 (2012)Google Scholar
  32. 32.
    Roohi, E.; Darbandi, M.: Recommendations on performance of parallel DSMC algorithm in solving subsonic nanoflows. Appl. Math. Model. 36, 2314–2321 (2012)Google Scholar
  33. 33.
    Mohammadzadeh, A.; Roohi, E.; Niazmand, H.; Stefanov, S.; Myong, R.S.: Thermal and second-law analysis of a micro- or nanocavity using direct-simulation Monte Carlo. Phys. Rev. E 85, 056310 (2012)Google Scholar
  34. 34.
    Mohammadzadeh, A.; Roohi, E.; Niazmand, H.: A parallel DSMC investigation of monatomic/diatomic gas flows in micro/nano cavity. Numer. Heat Transf. Part A Appl. 64(4), 305–325 (2013). doi:10.1080/10407782.2013.730463
  35. 35.
    Roohi, E.; Darbandi, M.: Applying a hybrid DSMC/Navier–Stokes frame to explore the effect of splitter plates in micro/nano propulsion systems. Sens. Actuators Part A Phys. 189, 409–419 (2013)Google Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  • Abdolrasoul Rangrazi
    • 1
  • Ehsan Roohi
    • 1
  • Hassan Akhlaghi
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations