Arabian Journal for Science and Engineering

, Volume 39, Issue 4, pp 2721–2731 | Cite as

Statistical Models to Optimize Fiber-Reinforced Dune Sand Concrete

  • M. Hadjoudja
  • M. M. Khenfer
  • H. A. MesbahEmail author
  • A. Yahia
Technical Note - Civil Engineering


Flexural strength and toughness of dune sand concrete (DSC) can be improved by reducing the water-to-cement ratio, adding fillers to improve the compactness of the matrix, or incorporating steel fibers. The incorporation of fibers and fillers can increase the viscosity and yield stress and necessitates higher dosage of high-range water-reducer to maintain the desired fluidity. The mixture proportioning of DSC involves tailoring several parameters to achieve adequate fresh and mechanical properties. The optimization procedure of DSC reinforced with steel fibers often necessitates several trial batches before establishing optimal balance among the various mixture parameters that affect workability and mechanical properties of concrete. DSC proportioned with 0.46–0.73 w/c ratio, 65–335 kg/m3 of limestone filler, and 0–108 kg/m3steel fiber was evaluated. The study was undertaken to model the influence of w/c, limestone filler, and fiber contents on air content, plastic viscosity, compressive and flexural strength characteristics of the DSC. Experimental test results showed that the incorporation of 94.5 kg/m3 of fiber resulted in a significant improvement in flexural strength (up to 11.5 MPa). Statistical models established using a central composite design indicate that the w/c has the greatest effect on air content, plastic viscosity, and compressive strength of DSC than limestone filler and fiber. However, the fiber is shown to have the greatest effect on flexural strength. The established models showed that the use of limestone filler can compensate for the reduction in compressive and flexural strengths due to the increase in w/c. Trade-off between w/c, limestone filler content, and fiber dosage to optimize mixture proportioning to enhance the mechanical properties of DSC without adversely affecting fluidity is discussed.


Dune sand concrete Factorial design Mechanical properties toughness Optimization Rheology Supplementary cementitious materials Steel fiber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Harthy, A.S.; Abdel Halim, M.; Taha, R.; Al-Jabri, K.S.: The properties of concrete made with fine dune sand. Constr. Build. Mater. 21, 1803–1808 (2007)Google Scholar
  2. 2.
    Benmalke, M.: Contribution to develop dune sand concrete for structural elements. Master thesis, Ecole Nationale polytechniqued’Algérie, Juin 108p. (in French) (1993)Google Scholar
  3. 3.
    Batata, A.; Zerouni, M.: Dune sand concrete—properties and performance. MATLOC Congres, Biskra, December 3, CNERIB, Algérie, 159–165 (in French) (1991)Google Scholar
  4. 4.
    Breysse D., Alain D., Attar A., Chauvin J.J.: Contribution of aggregate on mechanical properties of dune sand. Revue Française de génie civil. 1, 89–114 (1997)CrossRefGoogle Scholar
  5. 5.
    Bédérinaa, M.; Khenfer, M.M.; Dheillyc, R.M.; Quéneudeccm, M.: Reuse of local sand—effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes. Cement Concrete Res. 35, 1172–1179 (2005)Google Scholar
  6. 6.
    SABLOCRETE. Sand Concrete National Research & Development Project (in French). ENPC Press, France (1996)Google Scholar
  7. 7.
    Brouwers, H.J.H.; Radix, H.J.: Self-compacting concrete—the role of the particle size distribution. In: First International Symposium on Design, Performance and Use of SCC, Changsha, Hunan, China, pp. 109–118 (2005)Google Scholar
  8. 8.
    Hadjoudja, M.: Physico-mechanical and durability performance of dune sand concrete—influence of cure treatment and filler addition. Master thesis (in French). Université ATledji de Laghouat, Algérie, Octobre 168 p (2001)Google Scholar
  9. 9.
    Chanvin, J.J.; Grimaldi, G.: les bétons de sable. Bulletin de liaison des LPC 157, 9–15 (in French) (1988)Google Scholar
  10. 10.
    Rossi, P.: Steel fiber reinforced concretes (SFRC): An example of French research. ACI Mater. J. 91, 273–279 (1994)Google Scholar
  11. 11.
    Goupy, J.: Practicing Experimental Design Plans. Dunod, Paris (2005)Google Scholar
  12. 12.
    Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2001)Google Scholar
  13. 13.
    Sado, G.; Sado, M.C.: Experimental Design Plans—From Experimentation to Quality Insurance (in French). AFNOR Technique, Paris (1991)Google Scholar
  14. 14.
    Benoist, D.; Tourbier, Y.; Germain-Tourbier, S.: Experimental plans-Analyse and design. Lavoisier Tec & Doc, Paris (in French) (1995)Google Scholar
  15. 15.
    Sheffe, H.: The Analysis of Variance. Wiley, New York (1964)Google Scholar
  16. 16.
    Estellé, P.; Lanos, C.; Perrot, A.; Amziane, S.: Processing the vane shear flow data from coquette analogy. Appl. Rheol. 18(3), 34037-1–34037-6 (2008)Google Scholar
  17. 17.
    Dugue, D.: Applied and Theoretical Statistics. Masson, Paris (in French) (1958)Google Scholar
  18. 18.
    Yahia, A.; Tanimura, M.; Shimoyama, H.: Rheological Properties of Highly-flowablemortar containing limestone filler—effect of powder content and W/C ratio. Cement Concrete Res. 35, 532–539 (2005)Google Scholar
  19. 19.
    Yahia A., Khayat K.H.: Experiment design to evaluate interaction of high-range water-reducer and antiwashout admixture in high-performance cement grout. Cement Concrete Res. 31, 749–757 (2001)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  • M. Hadjoudja
    • 1
  • M. M. Khenfer
    • 1
  • H. A. Mesbah
    • 2
    Email author
  • A. Yahia
    • 3
  1. 1.Laboratoire de Génie Civil, Université A.Tledji de LaghouatLaghouatAlgeria
  2. 2.LGCGM, INSA RennesRennes Cedex 7France
  3. 3.Department of Civil EngineeringUniversité de SherbrookeQuebecCanada

Personalised recommendations