Skip to main content
Log in

Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles collision are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial–axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

Diffusion term

G :

Source term

k :

Kinetic energy

P :

Production term

p :

Pressure

R :

Correlation term

t :

Time

V, v :

Velocity

α :

Volume fraction

δ :

Kronic-Delta unit tensor

\({\varepsilon}\) :

Dissipation term

μ :

Dynamic viscosity

ν :

Kinematic viscosity

Π:

Pressure–strain term

ρ :

Density

τ :

Stress

ijkl :

Coordinates directions

g,p:

Gas and particle

l:

Laminar

r:

Relaxation

References

  1. Elghobashi S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309–329 (1994)

    Article  Google Scholar 

  2. Crowe, C.T.; Sommerfeld, M.; Tsuji, Y.: Multiphase Flows with Droplets and Particles, pp. 234–259. CRC Press, Florida (1998)

  3. Lun, C.K.K.; Savage, S.B.D.; Jeffrey, J.: Kinetic theory for granular flow: inelastic particles in coutte flow and inelastic particles in a general flow field. J. Fluid Mech. 140, 223–256 (1984)

    Google Scholar 

  4. Lun, C.K.K.: Granular dynamics of slightly inelastic spheres in Coutte flows. Phys. Fluids 8, 2868–2902 (1996)

    Google Scholar 

  5. Lun, C.K.K.; Liu, H.: Numerical simulation of dilute turbulent gas–solid flows in horizontal channels. Int. J. Multiph. Flow 2, 575–611 (1997)

    Google Scholar 

  6. Lun, C.K.K.: Numerical simulation of dilute turbulent gas–solid flows. Int. J. Multiph. Flow 26, 1707–1736 (2000)

    Google Scholar 

  7. Liao, C.M.; Lin, W.Y.; Zhou, L.X.: Simulation of particle-fluid turbulence interaction in sudden-expansion flows. Powder Technol. 90, 29–38 (1997)

    Google Scholar 

  8. Zhou, L.X.; Chen, T.: Simulation of swirling gas–particle flows using USM and k-\({\varepsilon}\) -kp two-phase turbulence models. Powder Technol. 114, 1–11 (2001)

  9. Liu, Y.; Li, G.H.: Numerical prediction of particle dispersions in downer under different gravity environments. Chem. Eng. J. 158, 281–289 (2010)

    Google Scholar 

  10. Liu, Y.; Li, G.H.; Kallio, S.: Hydrodynamic modeling of dense gas–particle turbulence flows under microgravity space environments. Microgr. Sci. Technol. 23, 1–11 (2011)

    Google Scholar 

  11. Zhou, L.X.; Liu, Y.; Xu, Y.: Measurement and simulation of the two-phase velocity correlation in sudden-expansion gas–particle flows. Acta Mechnica Sinca 27(4), 494–501 (2011)

    Google Scholar 

  12. Liu, Y.; Liu, X.; Li, G.H.; Zhou, L.X.: A particle–particle Reynolds stress transportation model of swirling particle-laden-mixtures turbulent flows. Adv. Powder Technol. 23, 175–184 (2012)

    Google Scholar 

  13. Mohanarangam, K.; Tu, J.Y.: Two-fluid model for particle turbulence interaction in a backward facing step. AIChE J. 53, 2254–2264 (2007)

    Google Scholar 

  14. Hishida, K.; Maeda, M.: Turbulence characteristics of particle-laden flow behind a rearward facing step. ASME 121, 207–212 (1991)

    Google Scholar 

  15. Shahnam, M.; Morris, G.J.: Gas–solid flow in an axi-symmetric sudden expansion. Proceedings of International Symposium on gas–solid Flows, La Jolla, CA, pp. 93–99 (1989)

  16. Fessler, J.R.; Eaton, J.K.: Turbulence modification by particles in a backward facing step flow. J. Fluid Mech. 394, 97–117 (1999)

    Google Scholar 

  17. Xu, Y.; Zhou, L.X.: Experimental studies of two-phase fluctuation velocity correlation in sudden-expansion flows. In: 8th International Symposium on gas–particle Flows, ASME-FED Summer Meeting, San Francisco, CD-ROM, Paper FEDSM99-7909 (1999)

  18. Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description, pp. 65–78. Academic Press, New York (1994)

  19. Savage, S.B.: Analysis of Slow High-Concentration Flows of Granular Materials. J. Fluid Mech. 377, 1–26 (1998)

    Google Scholar 

  20. Ding, J.; Gidaspow, D.: A bubbling fluidization model with kinetic theory of granular flow. AIChE J. 36, 523–538 (1990)

    Google Scholar 

  21. Sinclair, J.L.; Jackson, R.: Gas–particle flow in a vertical pipe with particle–particle interaction. AIChE J. 35, 1473–1486 (1989)

    Google Scholar 

  22. Bolio, E.J.; Yasuna, J.A.; Sinclair, J.L.: Dilute turbulent gas–solid flow in riser with particle–particle interactions. AIChE J. 41, 1375–1388 (1995)

    Google Scholar 

  23. Lu, H.L.; Liu, W.T.; Bie, R.S.; Gidaspow, D.: Kinetic theory of fluidized binary granular mixtures with unequal granular temperature. Phys. A 284, 265–276 (2000)

    Google Scholar 

  24. Lu, H.L.; Gidaspow, D.: Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chem. Eng. Sci. 58, 3777–3792 (2003)

    Google Scholar 

  25. Wang, S.Y.; Shen, Z.H.; Lu, H.L.: Numerical predictions of flow behavior and cluster size of particles in riser with particle rotation model and cluster-based approach. Chem. Eng. Sci. 63, 4116–4125 (2008)

    Google Scholar 

  26. Cheng, Y.; Guo, Y.C.; Wei, F.: Modeling the hydrodynamics of downer reactors based on kinetic theory. Chem. Eng. Sci. 54, 2019–2027 (1999)

    Google Scholar 

  27. Zheng, Y.; Wan, X.T.; Wei, F.; Jin, Y.: Numerical simulation of the gas–particle turbulent flow in riser reactor based on \({k{-}\varepsilon {-}kp{-}\varepsilon p{-}\Theta }\) two-fluid model. Chem. Eng. Sci. 56, 6813–6822 (2001)

  28. Farzad, B.T.; Hamed, Z.: Presumed PDF modeling of reactive two-phase flow in a three dimensional jet-stabilized model combustor. Energy Convers. Manag. 51, 225–234 (2010)

    Google Scholar 

  29. Chen, Z.C.; Li, Z.Q.; Wu, S.H.: Gas–particle flow characteristics of two swirl burners. Energy Convers. Manag. 50, 1180–1191 (2009)

    Google Scholar 

  30. Liu, Y.; Zhou, L.X.; Xu, C.X.: Numerical simulation of instantaneous flow structure of swirling and non-swirling coaxial-jet particle-laden turbulence flows. Phys. A Stat. Mech. Appl. 389, 5380–5389 (2010)

    Google Scholar 

  31. Wang, B.; Zhang, H.Q.; Wang, X.L.: Large eddy simulation of particle response to turbulence along its trajectory in a backward-facing step turbulent flow. Int. J. Heat Mass Transf. 49, 415–420 (2006)

    Google Scholar 

  32. Yu, K.F.; Lau, K.S.; Chan, C.K.: Numerical simulation of gas–particle flow in a single-side backward-facing step flow. J. Comput. Appl. Math. 163, 319–331 (2004)

    Google Scholar 

  33. Liu, Y.; Liu, X.; Li, G.H.; Jinag, L.X.: Numerical prediction effects of particle–particle collisions on gas–particle flows in swirl chamber. Energy Convers. Manag. 52, 1748–1754 (2011)

  34. Wen C.Y., Yu Y.H.: Mechanics of fluidization. Chem. Eng. Prog. Symp. 62, 100–111 (1966)

    Google Scholar 

  35. Bagnold, R.A.: Experiments on a gravity-free dispersion large solid spheres in a Netwonian fluid under shear. Proc. R. Soc. A225, 49–63 (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangli Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, S., Yang, W., Li, X. et al. Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows. Arab J Sci Eng 39, 2353–2361 (2014). https://doi.org/10.1007/s13369-013-0728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0728-5

Keywords

Navigation