Skip to main content
Log in

A Modification to SLIC and PLIC Volume of Fluid Models using New Advection Method

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, modified volume of fluid method based on flux correct transport (FCT) and Youngs’ VOF (YV) method using new advection method are presented. These methods are from simple line interface construction and piecewise linear interface construction methods. The developed model in this study is based on the Navier–Stokes equations (NSE) which describe the laminar flow of an incompressible viscous fluid. To model turbulence, the coupled Navier–Stokes and standard k−ɛ model as the Reynolds average NSE are used. These equations are discretized using finite difference method on the Cartesian staggered grids and solved using simplified marker and cell method. The free surface is displaced using the volume of fluid method based on FCT and Youngs’ algorithms. In these methods, for staggered grids, fluxes to neighboring cells are estimated based on cell face velocities. It means that fluid particles in the cell have the same velocity of the cell faces. However, in practice, these particles have a variable velocity between velocities of two adjacent cell faces. In the modified models of this research, the velocity in mass center of fluid cell is estimated and used to calculate fluxes from cell faces. The performance of the modified scheme has been evaluated using a number of alternative schemes taking into account translation, rotation; shear test and dam break on dry bed. Finally, Airy waves are generated by these models. The results showed that the modified models are more accurate than the original ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FCT:

Flux corrected transport

FDM:

Finite difference method

MFCT:

Modified flux corrected transport

MYV:

Modified Youngs’ VOF

NSE:

Navier–Stokes equations

NWT:

Numerical wave tank

RANSE:

Reynolds average Navier–Stokes equations

SLIC:

Simple line interface calculation

SMAC:

Simplified marker and cell

SSE:

Sum square error

SAE:

Sum absolute error

PLIC:

Piecewise linear interface construction

TDMA:

Three Diagonal Matrix Algorithm

VOF:

Volume of fluid

F :

Colour function

g i :

Source term including acceleration due to gravity in the i direction

k :

Kinetic energy

p :

Dynamic pressure

Re :

Reynolds number

t :

Time

u :

Velocity component in the x direction

v :

Velocity component in the y direction

ɛ :

Dissipation rate

Δt :

Time step

Δx :

Mesh size in the x direction

Δy :

Mesh size in the y direction

References

  1. Burnner B., Tryggavson G.: Direct numerical simulation of three- dimensional bubbly flow. Phys Fluids (Letter) 111, 1967–1969 (1999)

    Article  Google Scholar 

  2. Lafaurie B., Nardone C., Scardovelli R., Zaleski S., Zanetti G.: Modeling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113, 134–147 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Noh, W.F.; Woodward, P.: SLIC (Simple line Interface Calculation). In: van Dooren, A.I., Baines, M.J. (eds.) Lecture Notes in Physics, vol. 59, pp. 273–285. Springer, New York (1982)

  4. Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.: SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries. Technical Report LA-8355, Los Alamos Scientific Laboratory (1980)

  5. Torrey, M.D.; Cloutman, L.D.; Hirt, C.W.: NASA-VOF2D: a computer program for incompressible flows with free surface. Technical report LA-10462-MS, Los Alamos Scientific Laboratory (1985)

  6. Hirt, C.V.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Google Scholar 

  7. Youngs, D.L.: Time-depend multi- material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid dynamics, pp. 273–285. Academic Press, New York (1985)

  8. Rudman M.: Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24, 671–691 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duff, E.S.: Fluid flows aspects of solidification modeling: simulation of low pressure Die casting. Ph.D. Thesis, University of Queensland, Brisbane (1999)

  10. Rider W.J., Kothe B.D.: Reconstructing volume tracking. J. Comput. Phys. 141, 112–152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Harvie D.J.E., Fletcher D.F.: A new volume of fluid advection algorithm: the defined donating region scheme. Int. J. Numer. Methods Fluid 35, 151–172 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harvie D.J.E., Fletcher D.F.: A new volume of fluid advection algorithm: the stream scheme. J. Comput. Phys. 162, 1–32 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Geuyffier D., Li J., Nadim A., Scardovelli R., Zaleski S.: Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152, 423–456 (1999)

    Article  Google Scholar 

  14. Scardovelli, R.; Zaleski, S.: NOTE: analytical relations connecting linear interfaces and volume fractions in rectangular grid. J. Comput. Phys. 164, 228–237 (2000)

    Google Scholar 

  15. Scardovelli, R.; Zaleski, S.: Interface reconstruction with least-square fit and split Eulerian– Lagrangian advection. Int. J. Numer. Methods Fluids 41, 251–274 (2003)

    Google Scholar 

  16. Rafei, R.: Numerical solution of incompressible 3D turbulent flow in a spiral channel. M.Sc. thesis, Amirkabir University of Technology, Iran, Tehran (2004)

  17. Li C.W., Zang Y.F.: Simulation of free surface recirculating flows in semi-enclosed water bodies by a kw model. Appl. Math. Model. 22, 153–164 (1998)

    Article  MATH  Google Scholar 

  18. Gao, H.; Gu, H.Y.; Guo, L.J.: Numerical study of stratified oil-water two-phase turbulent flow in a horizontal tube. Int. J. Heat Mass Transfer 46, 749–754 (2003)

    Google Scholar 

  19. Ren B., Wang Y.: Numerical simulation of random wave slamming on structures in the splash zone. Ocean Eng. 31, 547–560 (2004)

    Article  Google Scholar 

  20. Shen, Y.M.; Ng, C.O.; Zheng, Y.H.: Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k−ɛ turbulence modeling. Ocean Eng. 31, 87–95 (2004)

    Google Scholar 

  21. Asadi S., Passandideh-Fard M.: A computational study on droplet impingement onto a thin liquid film. Arab. J. Sci. Eng. 34, 505–517 (2009)

    Google Scholar 

  22. Saghi H., Ketabdari M.J., Zamirian M.: A novel algorithm based on parameterization method for calculation of curvature of the free surface flows. Appl. Math. Model. 37, 570–585 (2013)

    Article  MathSciNet  Google Scholar 

  23. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, 1st edn. Springer Series in Computational Physics (1988)

  24. Renouard, D.P.; Seabra-Santos, F.J.; Temperville, A.M.: Experimental study of the generation, damping and reflection of a solitary wave. Dyn. Atm. Oceans 9, 341–358 (1985)

    Google Scholar 

  25. Boussinesq M.J.: Théorie de l’intumescence liquide, appelée onde solitaire ou de translation. se propageant dans un canal rectangulaire. C.-R. Acad. Sci. Paris. 72, 755–759 (1871)

    MATH  Google Scholar 

  26. Versteeg, H.K.; Malalaskera, W.: An Introduction to Computational Fluid Dynamics, The Finite Volume Method. Longman, Harlow (1995)

  27. Ketabdari, M.J.; Saghi, H.: Large Eddy simulation of laminar and turbulent flow on collocated and staggered grids. ISRN Mech. Eng., vol. 2011, Article ID 809498 (2011). doi:10.5402/2011/809498

  28. Ketabdari, M.J.; Nobari, M.R.H.; Moradi Larmaei, M.: Simulation of waves group propogation and breaking in coastal zone using a Navier–Stokes solver with an improved VOF free surface treatment. Appl. Ocean Res. 30, 130–143 (2008)

    Google Scholar 

  29. Nobari, M.R.H.; Ketabdari, M.J.; Moradi Larmaei, M.: A modified volume of fluid advection method for uniform Cartesian grids. Appl. Math. Model. 33, 2298–2310 (2009)

    Google Scholar 

  30. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids: J. Comput. Phys. 31, 335–362 (1979)

    Google Scholar 

  31. Ghia, U.; Ghia, K.N.; Shin, C.T.: High-re solutions for incompressible flow using the Navier–Stokes Equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Google Scholar 

  32. Nakayama, T.; Washizu, K.: Boundary element analysis of nonlinear sloshing problems. In: Bauerjee, P.K., Mukherjee, S. (eds.) Developments in Boundary Element Method-3. Elsevier Applied Science Publishers, Newyork (1984)

  33. Martin, J.C.; Moyce, W.J.: An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc. Lond. 244, 312–324 (1952)

    Google Scholar 

  34. Romate, J.E.: Absorbing boundary conditions for free surface waves. Comput. Phys. 99, 135–145 (1992)

    Google Scholar 

  35. Dean, R.G.; Darlymple, R.A.: Water wave mechanics for engineers and scientists. In: Advance Series on Ocean Engineering, vol. 2. World scientific publishing Co., Singapore (1991)

  36. Sorensen, R.M.: Basic coastal engineering, 3rd edn. In: Library of congress cataloging-in-publication data (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ketabdari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saghi, H., Ketabdari, M.J. A Modification to SLIC and PLIC Volume of Fluid Models using New Advection Method. Arab J Sci Eng 39, 669–684 (2014). https://doi.org/10.1007/s13369-013-0688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0688-9

Keywords

Navigation