Skip to main content
Log in

Numerical Simulation of Electroosmotic Flow in Flat Microchannels with Lattice Boltzmann Method

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present work, a new Lattice Boltzmann model has been developed to study the electroosmotic flows in a 2-D flat microchannel. The governing equations are presented in the continuum model, while a set of equivalent equations in Lattice Boltzmann model is introduced and solved numerically. In particular, the Poisson and the Nernst–Planck (NP) equations are solved by two new lattice evolution methods. In the analysis of electroosmotic flows, when the convective effects are not negligible or the electric double layers have overlap, the NP equations must be employed to determine the ionic distribution throughout the microchannel. The results of this new model have been validated by available analytical and numerical results. The model has also been used to examine the electroosmotic flows in a heterogeneous flat microchannel. Furthermore, the predictions of the NP model are compared with those of the Poisson Boltzmann (PB) equation to identify the applicability of the PB equations for such flows, which can also serve as validations for the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Ratio of the externally applied voltage to the elementary voltage

B :

Ratio of ionic pressure to dynamic pressure

D :

Diffusion coefficient

e :

Elementary charge of an electron

E :

Electric field intensity

H :

Width of microchannel

K :

Debye–Huckel parameter

k :

Double layer thickness parameter, k = KH

k B :

Boltzmann constant

n + :

Concentration of positive ions

n :

Concentration of negative ions

n 0 :

Bulk ion concentration

P :

Pressure

Re :

Reynolds number

Sc :

Schmidt number

T :

Absolute temperature

u *, v * :

Dimensionless velocity components

U ref :

Reference velocity

x *, y * :

Dimensionless Cartesian coordinates

z :

Valance number of positive and negative ions

\({\varepsilon _0}\) :

Permittivity of vacuum

\({\varepsilon _r}\) :

Dielectric constant of the solution

\({\phi}\) :

Applied electric potential

\({\mu}\) :

Dynamic viscosity of working fluid

\({\rho}\) :

Density of working fluid

\({\rho_{\rm e}}\) :

Net electrical charge density

\({\zeta}\) :

Zeta potential

\({\psi}\) :

EDL potential

References

  1. Ren L., Li D.: Electroosmotic flow in heterogeneous microchannels. J. Colloid Interface Sci. 243, 255–261 (2001)

    Article  Google Scholar 

  2. Fu L.M., Lin J.Y., Yang R.J.: Analysis of electroosmotic flow with step change in zeta potential. J. Colloid Interface Sci. 258, 266–275 (2003)

    Article  Google Scholar 

  3. Mirbozorgi S.A., Niazmand H., Renksizbulut M.: Electro-osmotic flow in reservoir-connected flat mircrochannels with non-uniform zeta potential. J. Fluids Eng. 128, 1133–1143 (2006)

    Article  Google Scholar 

  4. Sadeghi A., Saidi M.H.: Viscous dissipation effects on thermal transport characteristics of combined pressure and electroosmotically driven flow in microchannels. Int. J. Heat Mass Transfer 53, 3782–3791 (2010)

    Article  MATH  Google Scholar 

  5. Liu Q.S., Jian Y.J., Yang L.G.: Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates. J. Non-Newtonian Fluid Mech. 166, 478–486 (2011)

    Article  Google Scholar 

  6. Hadigol M., Nosrati R., Raisee M.: Numerical analysis of mixed electroosmotic/pressure driven flow of power-law fluids in microchannels and micropumps. Colloids Surf. A 374, 142–153 (2011)

    Article  Google Scholar 

  7. Succi S.: The Lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press, UK (2001)

    MATH  Google Scholar 

  8. Wang J., Wang M., Li Z.: Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296, 729–736 (2006)

    Article  Google Scholar 

  9. Wang J., Wang M., Li Z.: Lattice evolution solution for the nonlinear Poisson–Boltzmann equation in confined domains. Commun. Nonlinear Sci. Numer. Simul. 13, 575–583 (2008)

    Article  Google Scholar 

  10. Wang M., Wang J., Chen S.: Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson–Boltzmann methods. J. Comput. Phys. 226, 836–851 (2007)

    Article  MATH  Google Scholar 

  11. Chai Z., Shi B.: Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys. Lett. A 364, 183–188 (2007)

    Article  MATH  Google Scholar 

  12. Chai Z., Shi B.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tang G.H., Li Z., Wang J.K., He Y.L., Tao W.Q.: Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method. J. Appl. Phys. 100, 094908 (2006)

    Article  Google Scholar 

  14. Wang M., Wang J., Chen S., Pan N.: Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson–Boltzmann method. J. Colloid Interface Sci. 304, 246–253 (2006)

    Article  Google Scholar 

  15. Wang M., Chen S.: Electroosmosis in homogeneously charged micro- and nanoscale random porous media. J. Colloid Interface Sci. 314, 264–273 (2007)

    Article  Google Scholar 

  16. Wang D., Summers J.L., Gaskell P.H.: Modelling of electrokinetically driven mixing flow in microchannels with patterned blocks. Comput. Math. Appl. 55, 1601–1610 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tang G.H., Ye P.X., Tao W.Q.: Pressure-driven and electroosmotic non-Newtonian flows through microporous media via lattice Boltzmann method. J. Non-Newtonian Fluid Mech. 165, 1536–1542 (2010)

    Article  MATH  Google Scholar 

  18. Park H.M., Lee J.S., Kim T.W.: Comparison of the Nernst–Planck model and the Poisson–Boltzmann model for electroosmotic flows in microchannels. J. Colloid Interface Sci. 315, 731–739 (2007)

    Article  Google Scholar 

  19. Wang M., Kang Q.: Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. J. Comput. Phys. 229, 728–744 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dupuis, A.: From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river. PhD Thesis, University of Geneva, Geneva (2002)

  21. Zou Q., He X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ginzburg I.: Variably saturated flow described with the anisotropic Lattice Boltzmann methods. Comput. Fluids 35, 831–848 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Niazmand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadipoor, O.R., Niazmand, H. & Mirbozorgi, S.A. Numerical Simulation of Electroosmotic Flow in Flat Microchannels with Lattice Boltzmann Method. Arab J Sci Eng 39, 1291–1302 (2014). https://doi.org/10.1007/s13369-013-0679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0679-x

Keywords

Navigation