Arabian Journal for Science and Engineering

, Volume 38, Issue 12, pp 3383–3397 | Cite as

Analytical Solution for Steady and Transient States of Buck DC–DC Converter in CCM

Research Article - Electrical Engineering

Abstract

In this paper, a new method is proposed for mathematical modeling of buck dc–dc converter in continuous conduction mode. In this method, the differential equations of inductor current and capacitor voltage are firstly obtained. Then, using Laplace and Z transforms, the differential equations of inductor current and output voltage of converter are solved to obtain the relations of them. In the proposed method, the Laplace transform is used to determine the general equations of inductor current and output voltage and the Z-transform is used to determine their initial conditions. The transient and steady states responses of converter are analyzed using the obtained mathematical model. In addition, the effect of converter components on output voltage and inductor current ripples is investigated. The validity of proposed method is reconfirmed by experimental and simulation results using PSCAD/EMTDC software.

Keywords

Buck dc–dc converter Modeling Laplace transform Z-transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camara M.B., Gualous H., Gustin F., Berthon A., Dakyo B.: DC–DC converter design for super capacitor and battery power management in hybrid vehicle applications polynominal control strategy. IEEE Trans. Ind. Electron. 57(2), 587–597 (2010)CrossRefGoogle Scholar
  2. 2.
    Kimball J.W., Krein P.T.: Singular perturbation theory for dc–dc converters and application to PFC converters. IEEE Trans. Power Electron. 23(6), 1–12 (2008)CrossRefGoogle Scholar
  3. 3.
    Rivetta C.H., Emadi A., Widliamson G.A., Jayabalan R., Fahimi B.: Analysis and control of a buck dc–dc converter operating with constant power load in sea and undersea vehicles. IEEE Trans. Ind. Appl. 42(2), 559–572 (2006)CrossRefGoogle Scholar
  4. 4.
    Vinnikov D., Laugis J.: An improved high-voltage IGBT-based half-bridge dc–dc converter for railway applications. COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. 30(1), 280–299 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Villava M.G., Siqueira T.G., Ruppert E.: Voltage regulation of photovoltaic arrays small signal analysis and control design. IET Trans. Power Electron. 3(6), 869–880 (2010)CrossRefGoogle Scholar
  6. 6.
    Maksimovic D., Stankovic A.M., Thottuvelil V.J., Verghese G.C.: Modeling and simulation of power electronic converters. Proc. IEEE. 89(6), 898–912 (2001)CrossRefGoogle Scholar
  7. 7.
    Tasi-Fu W., Yu-Kai C.: Modeling PWM dc–dc converters out of basic converter units. IEEE Trans. Power Electron. 13(5), 870–881 (1998)CrossRefGoogle Scholar
  8. 8.
    Rim, C.T.; Joung, G.B.; Cho, G.H.: A state-space modeling of non-ideal dc–dc converters. In: Power electronics specialists conference 19th annual IEEE, pp 943–970 (1988)Google Scholar
  9. 9.
    Hamar, J.; Nagy, I.; Funata, H.; Nishida, Y.; Ohsaki, H.; Masada, E.: Discrete-time modeling tools for dc–dc converters. In: International power electronics conference, pp 1088–1093 (2010)Google Scholar
  10. 10.
    Sun J., Mitchell D.M., Greuel M.F., Krein PT., Bass R.M.: Averaged modeling of PWM converters operating in discontinuos conduction mode. IEEE Trans. Power Electron. 16(4), 482–492 (2001)CrossRefGoogle Scholar
  11. 11.
    Chetty P.R.K.: Current injected equivalent circuit approach modeling and analysis of current programmed switching dc–dc converters DCM. IEEE Trans. Ind. Appl. 18(3), 295–299 (1982)CrossRefGoogle Scholar
  12. 12.
    Charles W.G.: Simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory 18(1), 89–95 (1971)CrossRefGoogle Scholar
  13. 13.
    Opal A., Vlach J.: Consistent initial conditions of linear switched networks. IEEE Trans. Circuits Syst. 37, 364–372 (1990)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kelkar S.S., Lee F.C.Y.: A fast time domain digital simulation technique for power converters application to a buck converter with feed forward compensation. IEEE Trans. Power Electron. 1(1), 21–31 (1986)CrossRefGoogle Scholar
  15. 15.
    Luo F.L., Ye H.: Small signal analysis of energy factor and mathematical modeling for power dc–dc converters. IEEE Trans. Power Electron. 22(1), 69–79 (2007)CrossRefGoogle Scholar
  16. 16.
    Czarkowski D., Kazimierczuk M.K.: Energy-conservation approach to modeling PWM dc–dc converters. IEEE Trans. Aerosp. Electron. Syst. 29(7), 1059–1063 (1993)CrossRefGoogle Scholar
  17. 17.
    Bryant B., Kazimierczuk M.K.: Voltage-loop power stage transfer function with mosfet delay for boost PWM converter operating in CCM. IEEE Trans. Ind. Electron. 57(1), 347–353 (2007)CrossRefGoogle Scholar
  18. 18.
    Cuk, S.; Middlebrook, R.D.: A general unified approach to modeling switching converter power stage. In: Proceeding of the power electronics specialists conference, pp 18–34 (1976)Google Scholar
  19. 19.
    Biolek D.: Modeling of periodically switched networks by mixed S–Z description. IEEE Trans. CAS-I, 44(8), 750–758 (1997)CrossRefMATHGoogle Scholar
  20. 20.
    Zarudi M., Shenkman A.: Analysis of common switching converters using Z-transform. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 40(9), 602–605 (1993)CrossRefMATHGoogle Scholar
  21. 21.
    Biolek, D.; Biolkova, V.; Dobes, J.: Modeling of switched DC–DC converters by mixed s–z description. In: IEEE international symposium on circuits and systems, (2006)Google Scholar
  22. 22.
    Babaei E., Seyed Mahmoodieh M.E., Mashinchi Mahery H.: Operational modes and output voltage ripple analysis and design considerations of buck-boost dc–dc converters. IEEE Trans. Ind. Electron. 59(1), 381–391 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  1. 1.Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations