Skip to main content
Log in

Simulation of Two-Dimensional Nanomanipulation of Particles Based on the HK and LuGre Friction Models

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In previous research works, the manipulation of nanoparticles has been modeled using the Coulomb friction model. To have a precise displacement of nanoparticles, it is necessary to enhance the dynamic modeling of the manipulation process. Therefore, to improve the accuracy of the results afforded by the approximate Coulomb model, in this article, dynamic modeling of nanoparticle displacement has been carried out using the nanoscale friction models of HK and LuGre. The existing investigations show that in actual contacting surfaces, because of surface irregularities and unevenness, the real contact area is less than the apparent contact area and a reduction of the critical force is duly anticipated. According to the simulation results, replacing the nanoparticle manipulation models with the more precise friction models leads to reductions of critical time and force required for the nanoparticles’ movement. Thus, the obtained results confirm that the advantage of the new friction models is the higher accuracy and the closer conformity of the theoretical results with the experimental ones. Also, the results of change of cantilever dimensions and of contact conditions for the existing model and for the suggested models show a similar trend, which further proves the accuracy of the suggested models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Requicha, A.A.G.: Nanorobotics. In: Nof, S. (Ed.) Handbook of Industrial Robotics, 2nd edn. Wiley, NewYork, 199–210 (1999)

  2. Jalili, N.; Laxminarayana, K.: A Review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics 14, 907–945 (2004)

    Article  Google Scholar 

  3. Nosonovsky, M.; Bhushan, B.: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. 58, 162–193 (2007)

    Article  Google Scholar 

  4. Resch, R.; Bugacov, A.; Baur, C.; Koel, B.; Madhukar, A.; Will, P.: Manipulation of nanoparticles using dynamic force microscopy: Simulation and experiments. Appl. Phys. A: Mater. Sci. Process. 67, 265–271 (1998)

    Article  Google Scholar 

  5. Decossas, S.; Mazen, F.; Baron, T.; Bremond, G.; Souifi, A.: Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication. Nanotechnology 3 14, 1272–1278 (2003)

    Google Scholar 

  6. Decossas, S.; Patrone, L.; Bonnot, A.; Comin, F.; Derivaz, M.; Barski, A.; Chevrier, J.: Nanomanipulation by atomic force microscopy of carbon nanotubes on nanostructured surface. Surf. Sci. 543, 57–62 (2003)

    Article  Google Scholar 

  7. Ammi, M.; Ferreria, A.: Path planning of an AFM-Based Nanomanipulator Using Vertical Force Reflection, Proceeding of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 577–582 (2004)

  8. Du, E.; Cui, H.; Zhu, Z.: Review of Nanomanipulators for Nanomanufacturing, Int. J. Nanomanuf. 1: 83–104 (2006)

    Google Scholar 

  9. Falvo, M. R.; Superfine, R.: Mechanics and friction at the nanometer scale. J. Nanoparticle Res. 2:237–248 (2000)

    Google Scholar 

  10. Tafazzoli, A.; Sitti, M.: Dynamic behavior and simulation of nanoparticles sliding during nanoprobe-based positioning. Proceedings of IMECE’04 2004 ASME International Mechanical Engineering Congress,Anaheim, pp. 1–8 (2004)

  11. Zhou, Q.; Kallio, P.; Aria, F.; Fukuda, T.; Koivoc, H. N.: A Model for Operating Spherical Micro Objects, Proceeding of International Symposium on Micromechatronics and Human Science, Nagoya, Japan, pp. 79–85 (1999)

  12. Liu, B.H.; Yang, L.J.; Wang, Y.: Optical trapping force combining an optical fiber probe and an AFM metallic probe. Opt. Exp. 19(4), 3703–3714 (2011)

    Google Scholar 

  13. Rifai, K.E.; Rifai, O.E.; Youcef-Toumi, K.: Modeling and control of afm based nano-manipulation systems. Proceedings of 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 157–162 (2005)

  14. Sumer, B.; Sitti, M.: Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing

  15. Tafazzoli, A.; Pawashe, Ch.; Sitti, M.: Atomic Force Microscope based Two-Dimensional Assembly of Micro.Nanoparticles, Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, (ISATP 2005). The 6th IEEE International Symposium on, pp. 2230–235 (2005)

  16. Tafazzoli, A.; Sitti, M.: Dynamic models of nano-particle motion during nanoprobe based nanomanipulation. Proceedings of 4th IEEE Conference in Nanotechnology, Munich (2004)

  17. Korayem, M.H., Zakeri, M.: Sensitivity analysis of nanoparticles pushing critical conditions in 2-D controlled nanomanipulation based on AFM. J. Adv. Manuf. Technol. 41, 714–726 (2009)

    Article  Google Scholar 

  18. Berger, E.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55, 535–577 (2002)

    Article  Google Scholar 

  19. Sasaki, N.; Kobayashi, K.; Tsukada, M.: Atomic-scale friction image of graphite in atomic-force microscopy. Phye. Rev. B 54, 2138–2149 (1996)

    Google Scholar 

  20. Carpick, R.; Oltegree, D.; Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscope. Appl. Phys. Lett. 70, 1548–1550 (1997)

    Google Scholar 

  21. Carpick, R.; Flater, E.; Sridharan, K.; Oltegree, D.; Salmeron, M.: Atomic-scale friction and its connection to fracture mechanics. J. Miner. Met. Matter. Soc. 56, 48–52 (2004)

    Article  Google Scholar 

  22. Gnecco, E.; Bennewitz, R.; Gyalog, T.; Meyer, E.: Friction experiments on the nanometer scale. J. Phys. Condens. Matter 13, R619–R642 (2001)

    Google Scholar 

  23. Fujisawa, S.; Kishi, E.; Sugawara, Y.; Morita, S.: Two dimensionally discrete friction on the NaF(100) surface with the lattice periodicity. Nanotechnology 5, 8–11 (1994)

    Google Scholar 

  24. Fujisawa, S.; Kishi, E.; Sugawara, Y.; Morita, S.: Load dependence of two dimensional atomic scale friction, Phys. Rev. B 52, 5302–5305 (1995)

    Google Scholar 

  25. Kerssemakers, J.; Hosson, J.: Influence of spring stiffness and anisotropy on stick-slip atomic force microscopy imaging. Appl. Phys. 80, 623–631 (1996)

    Article  Google Scholar 

  26. Morita, S.; Fujisawa, S.; Sugawara, Y.: Spatially quantized friction with a lattice periodicity. Surf. Sci. Rep 23: 1–41

  27. Gnecco, E.; Bennewitz, R.; Gyalog, T.; Loppacher, C.; Bammerlin, M.; Meyer, E.; Guntherodt, H.J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  Google Scholar 

  28. Hoshi, Y.; Kawagishi, T.; Kawakatsu, H.: Velocity dependence and limitations of friction force microscopy of micac and graphite. Jpn. J. Appl. Phys. 39, 3804–3807 (2000)

    Google Scholar 

  29. Kerssemakers, J.; Hosson, J.: Influence of spring stiffness and anisotropy on stick-slip atomic force microscopy imaging. Appl. Phys. 80, 623–631 (1996)

    Article  Google Scholar 

  30. Hurtado, J.A.; Kim, K.S.: Scale effects in friction of single asperity contacts: Part1; from concurrent slip to single-dislocation-assisted slip. Proc. R. Soc. Lond. Ser. A A455, 3363–3384 (1999)

    Google Scholar 

  31. Hurtado, J.A.; Kim, K.S.: Scale effects in friction of single asperity contacts: Part2; multiple-dislocation-cooperated slip. Proc. R. Soc. Lond. Ser. A A455, 3385–3400 (1999)

    Google Scholar 

  32. Adams, G.G.; Muftu, S.; Azhar, N.M.: Scale-dependent model for multi-asperity contact and friction. ASME J. Tribol. 125, 700–708 (2003)

    Article  Google Scholar 

  33. De Wit, C.; Olsson, H.; Astrom, K.J.; Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425

  34. Landolsi, F.; Ghorbel, F.H.; Lou, J.; Lu, H.; Sun, Y.: Nanoscale friction dynamic modeling. ASME J. Dyn. Syst. Meas. Control 131, 061102-1-7 (2009)

    Google Scholar 

  35. Landolsi, F.; Sun, Y.; Lu, H.; Ghorbel, F.H.; Lou, J.: Regular and reverse nanoscale stick-slip behavior: modeling and experiments. Appl. Surf. Sci. 256, 2577–2582 (2010)

    Article  Google Scholar 

  36. Bhushan, B.: Handbook of micro/nano tribology, 2nd ed., CRC, Boca Rotan (1999)

  37. Fujisawa, S.; Sugawara, Y.; Ito, S.; Mishima, S.; Okada, T.; Morita, S.:The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology 4, 138–142 (1993)

    Google Scholar 

  38. Fujisawa, S.; Kishi, E.; Sugawara, Y.; Morita, S.: Atomic scale friction observed with a two-dimensional frictional force microscope. Phys. Rev. B 51, 7849–7857 (1995)

    Google Scholar 

  39. Tabor, D.: Friction-the present state of our understanding. ASME J. Lubr. Technol. 103, 169–179 (1981)

    Google Scholar 

  40. Bliman, P.A.; Sorine, M.: Friction modeling by hystersis operators. application to Dahl, stiction and stribeck effects, Proceeding of the Conference Models of Hystersis, Trento, pp. 10–19 (1991)

  41. Bliman, P. A.; Sorine, M.: A system-theoretic approach of systems with hystersis application to friction modeling and compensation. Proceeding of the Second European Control Conference, Groningen, pp. 1844–1849 (1993)

  42. Haessig, D.A.; Friedland, B.: On the modeling and simulation of friction. ASME J. Dyn. Syst. Meas. Control 113, 354–362 (1991)

    Article  Google Scholar 

  43. Dahl, P.: Solid friction damping of spacecraft oscillations. AIAA Paper No. 1104 Presented at the AIAA Guidance and Control Conference, Boston (1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Korayem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korayem, M.H., Zakeri, M. & Taheri, M. Simulation of Two-Dimensional Nanomanipulation of Particles Based on the HK and LuGre Friction Models. Arab J Sci Eng 38, 1573–1585 (2013). https://doi.org/10.1007/s13369-013-0594-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0594-1

Keywords

Navigation