Arabian Journal for Science and Engineering

, Volume 38, Issue 6, pp 1313–1319 | Cite as

Defining Homogeneous Regions for Streamflow Processes in Turkey Using a K-Means Clustering Method

  • Fatih Dikbas
  • Mahmut Firat
  • A. Cem Koc
  • Mahmud Gungor
Research Article - Civil Engineering

Abstract

The major problem in ungauged basins for planning and management of water resources projects is to estimate the flood magnitudes and frequencies. The identification of hydrologically homogeneous regions is one of the most important steps of regional frequency analysis. In this study, K-Means clustering method is applied to classify the maximum annual flows and identify the hydrologically homogeneous groups. For this aim, the annual maximum river flows, coefficient of variation and skewness of annual maximum river flows, latitude and longitude at 117 stations operated by the General Directorate of Electrical Power Resources Survey and Development Administration throughout Turkey are used. The optimal number of groups was determined as seven. Regional homogeneity test based on L-moments method is applied to check homogeneity of these seven regions identified by clustering analysis. The results show that regions defined by K-Means method can be used for regional flood frequency analysis. According to the results, K-Means method is recommended to identify the hydrologically homogeneous regions for regional frequency analysis.

Keywords

Cluster analysis K-Means Annual maximum flow Homogeneous region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mosley M.P.: Delimitation of New Zealand hydrologic regions. J. Hydrol. 49, 173–192 (1981)CrossRefGoogle Scholar
  2. 2.
    Wiltshire S.E.: Regional flood frequency analysis II: Multivariate classification of drainage basins in Britain. Hydrol. Sci. J. 31(3), 335–346 (1986)CrossRefGoogle Scholar
  3. 3.
    Acreman M.C., Sinclair C.D.: Classification of drainage basins according to their physical characteristics; an application for flood frequency analysis in Scotland. J. Hydrol. 84(3–4), 365–380 (1986)CrossRefGoogle Scholar
  4. 4.
    Burn D.H.: Cluster analysis as applied to regional flood frequency. J. Water Res. Plann. Manag. 115, 567–582 (1989)CrossRefGoogle Scholar
  5. 5.
    Guttman N.B.: The use of L-moments in the determination of regional precipitation climates. J. Clim. 6, 2309–2325 (1993)CrossRefGoogle Scholar
  6. 6.
    Burn D.H.: Catchment similarity for regional flood frequency analysis using seasonality measures. J. Hydrol. 202, 212–230 (1997)CrossRefGoogle Scholar
  7. 7.
    Andrade E.M.: Regionalization of small watersheds in arid and semiarid regions: Cluster and Andrews’ curve approaches. Eng. Agric. Jaboticabal 18(4), 39–52 (1999)Google Scholar
  8. 8.
    Burn D.H., Zrinji Z., Kowalchulk M.: Regionalization of catchments for regional flood frequency analysis. J. Hydrol. Eng. 2(2), 76–82 (1997)CrossRefGoogle Scholar
  9. 9.
    Lecce S.A.: Spatial variations in the timing of annual floods in the southeastern United States. J. Hydrol. 235, 151–169 (2000)CrossRefGoogle Scholar
  10. 10.
    Burn D.H., Goel N.K.: The formation of groups for regional flood frequency analysis. Hydrol. Sci. J. 45(1), 97–112 (2000)CrossRefGoogle Scholar
  11. 11.
    Smithers J.C., Schulze R.E.: A Methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. J. Hydrol. 241, 42–52 (2001)CrossRefGoogle Scholar
  12. 12.
    Soltani S., Modarres R.: Classification of spatio -temporal pattern of rainfall in Iran using a hierarchical and divisive cluster analysis. J. Spat. Hydrol. 6(2), 1–12 (2006)Google Scholar
  13. 13.
    Unal Y., Kındap T., Karaca M.: Redefining the climate zones of Turkey using Cluster analysis. Int. J. Climatol. 23, 1045–1055 (2003)CrossRefGoogle Scholar
  14. 14.
    Demirel, M.C.: Cluster analysis of streamflow data over Turkey. Master of Science Thesis. İstanbul Technical University, İstanbul, p. 119 (2004)Google Scholar
  15. 15.
    Turan, A.: Türkiye akarsu verimlerinin küme analizi ile sınıflandırılması. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 155s (2005)Google Scholar
  16. 16.
    Demirel, M.C.; Mariano, A.J.; Kahya, E.: Performing K-Means analysis to drought principal components of Turkish rivers. Proceedings of 27th AGU Hydrology Days, Fort Collins, Colorado, 145–151 (2007)Google Scholar
  17. 17.
    Kahya, E.; Demirel, M.C.; Piechota, T.C.: Spatial grouping of annual streamflow patterns in Turkey. Proceedings of 27th AGU Hydrology Days, Fort Collins, Colorado, 169–176 (2007)Google Scholar
  18. 18.
    Kahya, E.; Demirel, M.C.: A Comparison of low-flow clustering methods: Streamflow grouping. J. Eng. Appl. Sci. 2(3), 524–530 (2007)Google Scholar
  19. 19.
    Isik S., Singh V.P.: Hydrologic Regionalization of watersheds in Turkey. J. Hydrol. Eng. 13(9), 824–834 (2009)CrossRefGoogle Scholar
  20. 20.
    Kahya E., Demirel M.C., Bég A.O.: Hydrologic homogeneous regions using monthly streamflow in Turkey. Earth Sci. Res. J. 12(2), 181–193 (2008)Google Scholar
  21. 21.
    Yerdelen C., Karimi Y., Kahya E.: Frequency analysis of mean monthly streamflow in Çoruh Basin, Turkey. Fresenius Environ. Bullet. 19((7), 1300–1311 (2010)Google Scholar
  22. 22.
    Demirel, M.C.; Booij, M.J.; Kahya, E.: Validation of an ANN prediction model using a multi-station cluster analysis. ASCE J. Hydrol. Eng. doi:10.1061/(ASCE)HE.1943-5584.0000426 (in press)
  23. 23.
    Hosking, J.R.M.; Wallis, J.R.: Regional frequency analysis: An approach based on L-moments. Cambridge University Press, Cambridge (1997)Google Scholar
  24. 24.
    Hosking J.R.M., Wallis J.R.: Some statistics useful in regional frequency analysis. Water Res. Res. 29(2), 271–281 (1993)CrossRefGoogle Scholar
  25. 25.
    Cannarozzo M., Noto L.V., Viola F., La Loggia G.: Annual runoff regional frequency analysis in Sicily. Phy. Chem. Earth 34, 679–687 (2009)CrossRefGoogle Scholar
  26. 26.
    Lim Y.H., Voeller D.L.: Regional flood estimations in Red River using L-moment-based index-flood and Bulletin 17B Procedures. J. Hydrol. Eng. 14(9), 1002–1016 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2013

Authors and Affiliations

  • Fatih Dikbas
    • 1
  • Mahmut Firat
    • 2
  • A. Cem Koc
    • 1
  • Mahmud Gungor
    • 1
  1. 1.Civil Engineering Department, Faculty of EngineeringPamukkale UniversityDenizliTurkey
  2. 2.Civil Engineering Department, Faculty of EngineeringInonu UniversityMalatyaTurkey

Personalised recommendations