Skip to main content
Log in

Investigating the Dynamic Behavior of Two Mechanical Structures Via Analytical Methods

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, two new analytical techniques named max–min approach (MMA) and iteration perturbation method (IPM) are applied for solving nonlinear equations of two oscillatory systems. One case consists of a mass grounded by linear and nonlinear springs in series and the other case is the rigid rod rocks on a circular surface. The main aim of the work is obtaining highly accurate analytical solutions for nonlinear free vibration of conservative oscillations and investigates the dynamic behavior of the systems. Results reveal that the nonlinear frequency of oscillatory systems remarkably affected with the initial conditions. In contrast to the time marching solution results, the present analytical methods are effective and convenient. It is predictable that the MMA and the IPM can apply for various problems in engineering specially vibration equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beléndez A., Pascual C., Neipp C., Beléndez T., Hernández A.: An equivalent linearization method for conservative nonlinear oscillators. Int. J. Nonlinear Sci. Numer. Simul. 9, 9–17 (2008)

    Article  Google Scholar 

  2. Mickens, R.E.: Oscillations in Planar Dynamics Systems. World Scientific, Singapore (1996)

  3. Yatawara R.J., Neilson R.D., Barr A.D.S.: Theory and experiment on establishing the stability boundaries of a one-degree-of-freedom system under two high- frequency parametric excitation inputs. J. Sound Vib. 297, 962–980 (2006)

    Article  Google Scholar 

  4. Othman A.M., Watt D., Barr A.D.S.: Stability boundaries of an oscillator under high frequency multi-component parametric excitation. J. Sound Vib. 112, 249–259 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fereidoon A., Ganji D.D., Kaliji H.D., Ghadimi M.: Analytical solution for vibration of buckled beams. Int. J. Res. Rev. Appl. Sci. 4(3), 17–21 (2010)

    Google Scholar 

  6. Nawaz Y.: Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Comput. Math. Appl. 61, 2330–2341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ganji S.S., Barari A., Sfahani M.G., Domairry G., Teimourzadeh Baboli P.: Consideration of transient stream/aquifer interaction with the nonlinear Boussinesq equation using HPM. J. King Saud Univ. Sci. 23, 211–216 (2011)

    Article  Google Scholar 

  8. Farrokhzad F., Mowlaee P., Barari A., Choobbasti A.J., Kaliji H.D.: Analytical investigation of beam deformation equation using perturbation, homotopy perturbation, variational iteration and optimal homotopy asymptotic methods. Carpath. J. Math. 27(1), 51–63 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Chun C., Sakthivel R.: Homotopy perturbation technique for solving two-point boundary value problems–comparison with other methods. Comput. Phys. Commun. 181, 1021–1024 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fooladi M., Abaspour S.R., Kimiaeifar A., Rahimpour M.: On the analytical solution of Kirchhoff simplified model for beam by using of homotopy analysis method. World Appl. Sci. J. 6(3), 297–302 (2009)

    Google Scholar 

  11. Ghotbi A.R., Bararnia H., Domairry G., Barari A.: Investigation of a powerful analytical method into natural convection boundary layer flow. Commun. Nonlinear Sci. Numer. Simul. 14, 2222–2228 (2009)

    Article  MATH  Google Scholar 

  12. Sohouli A.R., Famouri M., Kimiaeifar A., Domairry G.: Application of homotopy analysis method for natural convection of Darcian fluid about a vertical full cone embedded in pours media prescribed surface heat flux. Commun. Nonlinear Sci. Numer. Simul. 15, 1691–1699 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. He J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B. 20(10), 1141–1199 (2006)

    Article  MATH  Google Scholar 

  14. Özis T., Yıldırım A.: Generating the periodic solutions for forcing van der pol oscillators by the iteration perturbation method. Nonlinear Anal. Real World Appl. 10, 1984–1989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Younesian, D., Kalami, Y.M., Askari, H., Saadatnia, Z.: Frequency analysis of higher-order duffing oscillator using homotopy and iteration-perturbation techniques. In: 18th Annual International Conference on Mechanical Engineering-ISME 2010-3187

  16. Junfeng L.: An analytical approach to the Fornberg–Whitham type equations by using the variational iteration method. Comput. Math. Appl. 61, 2010–2013 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shang X., Han D.: Application of the variational iteration method for solving nth-order integro-differential equations. J. Comput. Appl. Math. 234, 1442–1447 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Barari A., Kaliji H.D., Ghadimi M., Domairry G.: Non-linear vibration of Euler–Bernoulli beams. Lat. Am. J. Solids Struct. 8, 139–148 (2011)

    Google Scholar 

  19. Zhao Y., Xiao A.: Variational iteration method for singular perturbation initial value problems. Comput. Phys. Commun. 181, 947–956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Joneidi A.A., Ganji D.D., Babaelahi M.: Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int. Commun. Heat Mass Transf. 36, 757–762 (2009)

    Article  Google Scholar 

  21. Abdel-Halim Hassan I.H.: Application to differential transformation method for solving systems of differential equations. Appl. Math. Model. 32, 2552–2559 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaliji H.D., Fereidoon A., Ghadimi , M. , Eftari M.: Analytical solutions for investigating free vibration of cantilever beams. World Appl. Sci. J. (Special Issue of Applied Math) 9, 44–48 (2010)

    Google Scholar 

  23. Zhao L.: He’s frequency–amplitude formulation for nonlinear oscillators with an irrational force. Comput. Math. Appl. 58, 2477–2479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fereidoon A., Ghadimi M., Barari A., Kaliji H.D., Domairry G.: Nonlinear vibration of oscillation systems using frequency–amplitude formulation. J. Shock Vib. 18, 1–10 (2011)

    Google Scholar 

  25. He J.H.: Max–min approach to nonlinear oscillators. Int. J. Nonlinear Sci. Numer. Simul. 9(2), 207–210 (2008)

    Google Scholar 

  26. Ibsen L.B., Barari A., Kimiaeifar A.: Analysis of highly nonlinear oscillation systems using He’s max–min method and comparison with homotopy analysis and energy balance methods. Sadhana 35, 433–448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ganji S.S., Barari A., Ganji D.D.: Approximate analysis of two-mass–spring systems and buckling of a column. Comput. Math. Appl. 61, 1088–1095 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sfahani, M.G., Ganji, S.S., Barari, A., Mirgolbabaei, H., Domairry, G.: Analytical solutions to nonlinear conservative oscillator with fifth-order nonlinearity. Earthq. Eng. Eng. Vib. 9, 367–374, (2010). doi:10.1007/s11803-010-0021-5

  29. Ghadimi M., Kaliji H.D., Barari A.: Analytical solutions to nonlinear mechanical oscillation problems. J. Vibroeng. 13(2), 133–143 (2011)

    Google Scholar 

  30. Özis T., Yildirim A.: Determination of the frequency–amplitude relation for a Duffing-harmonic oscillator by the energy balance method. Comput. Math. Appl. 54, 1184–1187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ganji, S.S., Ganji, D.D., Ganji, Z.Z., Karimpour, S.: Periodic solution for strongly nonlinear vibration system by He’s energy balance method. Acta Applicandae Math. (2008). doi:10.1007/s10440-008-9283-6

  32. Mehdipour I., Ganji D.D., Mozaffari M.: Application of the energy balance method to nonlinear vibrating equations. Curr. Appl. Phys. 10, 104–112 (2010)

    Article  Google Scholar 

  33. Pakdemirli M., Karahan M.M.F., Boyaci H.: A new perturbation algorithm with better convergence properties: Multiple Scales Lindstedt Poincare Method. Math. Comput. Appl. 14(1), 31–44 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Pakdemirli M., Karahan M.M.F., Boyaci H.: Forced vibration of strongly nonlinear systems with Multiple Scales Lindstedt Poincare Method. Math. Comput. Appl. 16(4), 879–889 (2011)

    MathSciNet  Google Scholar 

  35. Pakdemirli M., Karahan M.M.F.: A new perturbation solution for systems with strong quadratic and cubic nonlinearities. Math. Methods Appl. Sci. 33, 704–712 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Pakdemirli M., Aksoy Y., Boyaci H.: A new perturbation–iteration approach for first order differential equations. Math. Comput. Appl. 16(4), 890–899 (2011)

    MathSciNet  Google Scholar 

  37. Aksoy Y., Pakdemirli M.: New perturbation–iteration solutions for Bratu-type equations. Comput. Math. Appl. 59, 2802–2808 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Telli S., Kopmaz O.: Free vibrations of a mass grounded by linear and nonlinear springs in series. J. Sound Vib. 289, 689–710 (2006)

    Article  Google Scholar 

  39. Gaylord E.W.: Natural frequencies of two nonlinear systems compared with the pendulum. J. Appl. Mech. 26, 145–146 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghadimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaliji, H.D., Ghadimi, M. & Eftari, M. Investigating the Dynamic Behavior of Two Mechanical Structures Via Analytical Methods. Arab J Sci Eng 38, 2821–2829 (2013). https://doi.org/10.1007/s13369-012-0494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0494-9

Keywords

Navigation