Skip to main content

Advertisement

Log in

Long-Term Wind Speed Analysis and Detection of its Trends Using Mann–Kendall Test and Linear Regression Method

  • Research Article - Special Issue - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Exponentially growing global population, power demands, pollution levels, and on the other hand rapid advancement in means of communication have made the people aware of the complex do or die situation. Kingdom of Saudi Arabia has vast open land, abundance of fossil fuel, not much population but has always been among the front runners whereas development and utilization of clean sources of energy are concerned. Long-term wind speed trends have been studied in this study using Mann–Kendall statistical trend analysis method. Historical daily mean wind speed data measured at 8–12m above ground level at national and international airports in the Kingdom over a period of 37 years was used to obtain long-term annual and monthly mean wind speeds, annual mean wind speed trends, and energy yield using an efficient modern wind turbine of 2.75 MW rated power. Trend analysis that showed a decreasing trend of 0.01852 m/s per year was observed in annual mean wind speed values based on the algebraic average of the trend coefficient (a) of all the stations used in the present work. Based on long-term annual average wind speed of more than 4 m/s, Al-Wejh, Dhahran, Guriat, Turaif, and Yanbo are placed in the preferred category for wind power development, and AlJouf, Arar, and Qaisumah with annual average wind speed 3.75 m/s range are placed in the second list of preferred locations for wind power development. At most of the locations, the wind power can be generated with 25–35% of plant capacity factor in Saudi Arabia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Constant

f(t):

Continuous monotonic increasing or decreasing function of time

Q :

Slope

q :

Number of tied groups

S :

Statistical parameter

t p :

Number of data values in the pth group

VAR(S):

Variance

Z :

Test statistic

ε i :

Residual

α :

Confidence level

References

  1. Global Wind Energy Council (GWEC): Global wind power boom continues despite economic woes (2011)

  2. Rehman S.: Prospects of wind farm development in Saudi Arabia. Renew. Energy. 30(3), 447–463 (2004a)

    Article  Google Scholar 

  3. Rehman S.: Wind energy resource assessment for Yanbo, Saudi Arabia. Energy Convers. Manag. 45(13–14), 2019–2032 (2004b)

    Article  Google Scholar 

  4. Rehman S., Aftab A.: Assessment of wind energy potential for coastal locations of the Kingdom Saudi Arabia. Energy Int. J. 29, 1105–1115 (2004)

    Article  Google Scholar 

  5. Rehman S., Halawnai T.O., Mohandes M.: Wind power cost assessment at twenty locations in the Kingdom of Saudi Arabia. Renew. Energy. 28, 573–583 (2003)

    Article  Google Scholar 

  6. Al-Abbadi N.M.: Wind energy resource assessment for five locations in Saudi Arabia. Renew. Energy. 30, 1489–1499 (2005)

    Article  Google Scholar 

  7. Al-Abbadi, N.M.; Alawaji, S.H.; Eugenio, N.N.: Wind Energy Resource Assessment: A three year Experience. In: Windpower 1997 Proceedings, Annual Conference of the American Wind Energy Association, AWEA, Austin, Texas, pp. 533–541 (1996)

  8. Alawaji S.H.: Wind energy resource assessment in Saudi Arabia-I network design and description. Renew. Energy. 7(4), 319–328 (1996)

    Article  Google Scholar 

  9. Rehman S., Halawani T.O.: Statistical characteristics of wind in Saudi Arabia. Renew. Energy. 4(8), 949–956 (1996)

    Article  Google Scholar 

  10. Rehman S., Halawani T.O., Husain T.: Weibull parameters for wind speed distribution in Saudi Arabia. Solar Energy. 3(6), 473–479 (1994)

    Article  Google Scholar 

  11. Jaramillo O.A., Borja M.A.: Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case. Renew. Energy. 29, 1613–1630 (2004)

    Article  Google Scholar 

  12. Kainkwa R.M.R.: Wind speed pattern and the available wind power at Basotu, Tanzania. Renew. Energy. 21, 289–295 (2000)

    Article  Google Scholar 

  13. Celik A.N.: Energy output estimation for small-scale wind power generators using Weibull-representative wind data. J. Wind Eng. Ind. Aerodyn. 91, 693–707 (2003)

    Article  Google Scholar 

  14. Ackermann T., Soder L.: Wind energy technology and current status: a review. Renew. Sustain. Energy Rev. 4, 315–374 (2000)

    Article  Google Scholar 

  15. Jebraj S., Inivan S.: A review of energy model. Renew. Sustain. Energy Rev. 10(4), 281–311 (2006)

    Article  Google Scholar 

  16. Perez I.A., Garcia M.A., Sanchez M.N. et al.: Autocorrelation analysis of meteorological data from a RASS. J. Appl. Meteorol. 43(8), 1213–1223 (2004)

    Article  Google Scholar 

  17. Akpinar K.E., Akpinar S.: An assessment on seasonal analysis of wind energycharacteristics and wind turbine characteristics. Energy Convers. Manag. 46, 1848–1867 (2005)

    Article  Google Scholar 

  18. Acker T.L., Williams S.K., Duque E.P.N., Brummels G., Buechler J.: Wind resource assessment in the state of Arizona: inventory, capacity factor and cost. Renew. Energy. 2, 1453–1466 (2007)

    Article  Google Scholar 

  19. Shata A.S.A., Hanitsch R.: The potential of electricity generation on the east coast of Red Sea in Egypt. Renew. Energy. 31(10), 1597–1615 (2006)

    Article  Google Scholar 

  20. Shata A.S.A., Hanitsch R.: Electricity generation and wind potential assessment at Hurghada, Egypt. Renew. Energy. 33, 141–148 (2007)

    Article  Google Scholar 

  21. Hrayshat E.S.: Wind resource assessment of the Jordanian southern region. Renew. Energy. 32, 1948–1960 (2007)

    Article  Google Scholar 

  22. Bagiorgas H.S., Assimakopoulos M.N., Theoharopoulos D., Matthopoulos D., Mihalakakou G.K.: Electricity generation using wind energy conversion systems in the area of Western Greece. Energy Convers. Manag. 48, 1640–1655 (2007)

    Article  Google Scholar 

  23. Jiang Y., Yuan X., Feng J., Cheng X.: Wind power density statistics using the Weibull model for inner Mongolia, China. Wind Eng. 30(2), 161–168 (2006)

    Article  Google Scholar 

  24. Ulgen K., Genc A., Hepbasli A. et al.: Assessment of wind characteristics for energy generation. Energy Sources. 26(13), 1227–1237 (2004)

    Article  Google Scholar 

  25. Eskin N., Artar H., Tolun S.: Wind energy potential of Gokceada Island in Turkey. Renew. Sustain. Energy Rev. 12, 839–851 (2008)

    Article  Google Scholar 

  26. El-Osta W., Kalifa Y.: Prospects of wind power plants in Libya: a case study. Renew. Energy. 28, 363–371 (2003)

    Article  Google Scholar 

  27. Omer A.M.: On the wind energy resources of Sudan. Renew. Sustain. Energy Rev. 12, 2117–2139 (2008)

    Article  Google Scholar 

  28. Himri Y., Rehman S., Draoui B., Himri S.: Wind power potential assessment for three locations in Algeria. Renew. Sustain. Energy Rev. 12(9), 2495–2504 (2008)

    Article  Google Scholar 

  29. Tar, K.: Some statistical characteristics of monthly average wind speed at various heights. Renew. Sustain. Energy Rev. 12, 1712e–1724e (2008)

    Google Scholar 

  30. Jones M.S., Colle B.A., Tongue J.S.: Evaluation of a mesoscale short-range ensemble forecast system over the northeast United States. Weather Forecast. 22(1), 36–55 (2007)

    Article  Google Scholar 

  31. Kamal L., Jafri Y.Z.: Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Solar Energy. 61(1), 23–32 (1997)

    Article  Google Scholar 

  32. Torres J., Garcia A., Deblas M., Defrancisco A.: Forecast of hourly average wind speed with arma models in navarre (Spain). Solar Energy. 79(1), 65–77 (2005)

    Article  Google Scholar 

  33. Kavasseri R., Seetharaman K.: Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy. 34(5), 1388–1393 (2009)

    Article  Google Scholar 

  34. Shamshad A., Bawadi M.A., Wan Hussin W.M.A., Majid T.A., Sanusi S.A.M.: First and second order Markov chain models for synthetic generation of wind speed time series. Energy. 30, 693–708 (2005)

    Article  Google Scholar 

  35. Costa A., Crespo A., Navarro J., Lizcano G., Madsen H., Feitosa E.: A review on the young history of the wind power short-term prediction. Renew. Sustain. Energy Rev. 12(6), 1725–1744 (2008)

    Article  Google Scholar 

  36. Alexiadis M., Dokopoulos P., Sahsamanoglou H., Manousaridis I.: Short term forecasting of wind speed and related electrical power. Solar Energy. 63(1), 61–68 (1998)

    Article  Google Scholar 

  37. More A., Deo M.C.: Forecasting wind with neural networks. Marine Struct. 16(1), 35–49 (2003)

    Article  Google Scholar 

  38. Maqsood I., Khan M.R., Huang G.H., Abdalla R.: Application of soft computing models to hourly weather analysis in southern Saskatchewan, Canada. Eng. Appl. Artif. Intell. 18(1), 115–125 (2005)

    Article  Google Scholar 

  39. Kariniotakis G., Stavrakakis G., Nogaret E.: Wind power forecasting using advanced neural network models. IEEE Trans. Energy Convers. 11(4), 762–767 (1996)

    Article  Google Scholar 

  40. Barbounis T.G., Theocharis J.B.: Locally recurrent neural networks for long-term wind speed and power prediction. Neurocomputing 69(4–6), 466–496 (2006)

    Article  Google Scholar 

  41. Burnham K.P., Anderson D.R.: Model Selection and Multi-model Inference. 2nd edn. Springer, New York (2002)

    Google Scholar 

  42. Sánchez I.: Adaptive combination of forecasts with application to wind energy. Int. J. Forecast. 24(4), 679–693 (2008)

    Article  Google Scholar 

  43. Kendall M.G.: A new measure of rank correlation. Biometrika. 30, 81–93 (1938)

    MathSciNet  MATH  Google Scholar 

  44. Kendall, M.G.: Rank Correlation Methods. Charles Griffin, London, UK, p. 272 (1970)

  45. Mann H.B.: Non-parametric test of randomness against trend. Econometrica. 13, 245–259 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gilbert R.O.: Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York (1987)

    Google Scholar 

  47. Salmi T.; Mtt, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T.: Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates—The EXCEL template application MAKESENS. Publication on air quality, Report Code FMI-AQ-31, Finnish Meteorological Institute, Helsinki, Finland

  48. Sirois, A.: A brief and biased overview of time series analysis or how to find tha evasive trend. In WMO report No. 133; WMO/EMEP workshop on advanced statistical methods and their applications to air quality data sets, Helsinki, September 14–16 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafiqur Rehman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, S. Long-Term Wind Speed Analysis and Detection of its Trends Using Mann–Kendall Test and Linear Regression Method. Arab J Sci Eng 38, 421–437 (2013). https://doi.org/10.1007/s13369-012-0445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0445-5

Keywords

Navigation