Skip to main content

A Review on the Drawbacks of Renewable Energy as a Promising Energy Source of the Future

Abstract

A common misconception of renewable energy (RE) is that it could serve as a holistic solution to the problems associated with the disreputable but yet reliable fossil fuel and nuclear energy. Energy supply and related environmental problems, especially global warming could be successfully addressed just by switching from the conventional fossil fuel and nuclear energy to purportedly environmental friendly and sustainable renewable sources. But this credence is proved to be a fallacy as RE sources could not meet the demand of energy that is growing globally without posing certain associated problems to human and the environment. RE supply from domestic wind, hydroelectric dam, solar energy, ground-source heat, and biomass waste was proven to be incapable of meeting energy demand. The scale of demand for these resources combined would be highly colossal and there are bound to be problems in integrating massive amounts of intermittent RE into existing supply systems. This paper will discuss problems-related RE (biomass sources, wind, solar, hydropower and geothermal energy combined) from engineering, environment, health and economy perspective.

This is a preview of subscription content, access via your institution.

References

  1. Fells, I.: The problem. In: Dunderdale, J. (ed.) Energy and the environment. Royal Society of Chemistry, UK (1990)

  2. Moriarty P., Honnery D.: What is the global potential for renewable energy? Renew. Sust. Energy Rev. 16, 244–252 (2012)

    Article  Google Scholar 

  3. About 7 Billion & Me. http://www.7billionandme.org/about.php (2012). Accessed 16 June 2012

  4. Norton, R.: An overview of a sustainable city strategy. Report Prepared for the Global Energy Assessment Planning for Cities and Municipalities, Montreal, Quebec (1991)

  5. Rosen M.A.: The role of energy efficiency in sustainable development. Technol. Soc. 15(4), 21–26 (1996)

    Article  Google Scholar 

  6. Dincer I., Rosen M.A.: A worldwide perspective on energy, environment and sustainable development. Int. J. Energy Res. 22(15), 1305–1321 (1998)

    Article  Google Scholar 

  7. Hartley, D.L.: Perspectives on renewable energy and the environment. In: Tester, J.W., Wood, D.O., Ferrari, N.A. (eds.) Energy and the Environment in the 21st Century. MIT, Massachusetts (1990)

  8. Gourieres D.L.: Wind Power Plants Theory and Design. Pergamon Press, Oxford (1982)

    Google Scholar 

  9. Billinton R., Gao Y.: Multistate wind energy conversion system models for adequacy assessment of generating systems incorporating wind energy. IEEE Trans. Energy Convers. 23(1), 163–170 (2008)

    Article  Google Scholar 

  10. Karki R., Billinton R.: Reliability/cost implication of PV and wind energy utilization in small isolated power systems. IEEE Trans. Energy Convers. 16(4), 368–373 (2001)

    Article  Google Scholar 

  11. Manco, T., Testa, A.: A Markovian approach to model power availability of a wind turbine. Power Tech. IEEE Lausanne, pp. 1256–1261. Switzerland, 1–5 July 2007

  12. Mohandes M., Rehman A.S., Rahman S.M.: Spatial estimation of wind speed. Int. J. Energy Res. 36(4), 545–552 (2012)

    Article  Google Scholar 

  13. Himri Y., Rehman S., Setiawan A.A., Himri S.: Wind energy for rural areas of Algeria. Renew. Sust. Energy Rev. 16, 2381–2385 (2012)

    Article  Google Scholar 

  14. McVicar T.R., Roderick M.L., Donohue R.J., Li L.T., Van Niel T.G., Thomas A., Grieser J., Jhajharia D., Himri Y., Mahowald N.M., Mescherskaya A.V., Kruger A.C., Rehman S., Dinpashoh Y.: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implication for evaporation. J. Hydrol. 417, 182–205 (2012)

    Article  Google Scholar 

  15. Bagiorgas H.S., Mihalakakou G., Rehman S., Al-Hadhrami L.M.: Weibull parameters estimation using four different methods and most energy carrying wind speed analysis. Int. J. Green Energy 8(5), 529–554 (2011)

    Article  Google Scholar 

  16. Mahbub A.M., Rehman S., Meyer J., Al-Hadhrami L.M.: Review of 600kw to 2500kw sized wind turbines and optimization of hub height for maximum wind energy yield realization. Renew. Sust. Energy Rev. 15(1), 3839–3849 (2011)

    Google Scholar 

  17. Rehman S., Aftab A., Al-Hadhrami L.M.: Development and economic assessment of a grid connected 20 MW installed capacity wind farm. Renew. Sust. Energy Rev. 15(1), 833–838 (2011)

    Article  Google Scholar 

  18. Ackermann T.: Means to reduce CO2-emissions in the Chinese electricity system, with special consideration to wind energy. Renew. Energy 16, 899–903 (1999)

    Article  Google Scholar 

  19. Wen J., Zheng Y., Donghan F.: A review on reliability assessment for wind power. Renew. Sust. Energy Rev. 13, 2485–2496 (2009)

    Article  Google Scholar 

  20. Kaygusuz K.: Hydropower and world’s energy future. Energy Sour. 26, 215–224 (2004)

    Article  Google Scholar 

  21. Yuksel I.: Hydroelectric power in developing countries. Energy Sour. Part B 4, 377–386 (2009)

    MathSciNet  Article  Google Scholar 

  22. Kaygusuz K.: Sustainable development of hydropower. Energy Sources 24, 803–815 (2002)

    Article  Google Scholar 

  23. Yuksel I.: Hydropower for sustainable water and energy development. Energy Rev. 14, 462–469 (2010)

    Google Scholar 

  24. Hopkinson P., James P., Sammut A.: Environmental performance evaluation in the water industry of England and Wales. J. Environ. Plan. Manage. 43(6), 873–895 (2000)

    Article  Google Scholar 

  25. Hasnain S., Elani U.: Solar energy education: a viable pathway for sustainable development. Renew. Energy 14(1–4), 387–392 (1998)

    Article  Google Scholar 

  26. Bourdiros, E.L.: Renewable energy sources education and research as an education for survival. In: Progress in Solar Energy Education, Borlange, Sweden, vol. 1, pp. 12–16 (1991)

  27. Hasnain S., Elani U., Alawaji S., Abaoud H., Smiai M.: Prospects and proposals for solar energy education programs. Appl. Energy 52, 307–314 (1995)

    Article  Google Scholar 

  28. EREC. European Renewable Energy Council: Renewable energy target for Europe: 20 % by 2020. Brief Paper, Brussel (2005)

  29. ESTIF. European Solar Thermal Industry Federation (ESTIF). Solar thermal markets in Europe, Brussel (2006)

  30. Rehman, S., Halawani, T.O.: Global solar radiation estimation. Renew. Energy 12(4), 369–385 (1997)

    Google Scholar 

  31. Othman, A., Jakhrani, A., Abidin, W., Zen, H., Baharun, A.: Malaysian government policy. In: C.o.N.R.a.G. Technology (ed.) Renewable Energy: Solar PV System, in World Engineering Congress 2010, 2–5 August 2010. (2010) The Federation of Engineering Institutions of Islamic Countries, Kuching (2010)

  32. Rehman S., AL-Hadhrami L.M.: Study of a solar PV–Diesel–Battery hybrid power system for a remotely located population near Rafha, Saudi Arabia. Energy 12, 4986–4995 (2010)

    Article  Google Scholar 

  33. Mohandes M., Rehman S.: Global solar radiation maps of Saudi Arabia, J. Energy Power Eng. 4(12), 57–63 (2010)

    Google Scholar 

  34. Rehman S., Mohandes M.: Estimation of diffuse fraction of solar radiation using artificial neural networks. Energy Sour. Part A 31(11), 974–984 (2009)

    Article  Google Scholar 

  35. Rehman S., Mohandes M.: Artificial neural network based estimation of global solar radiation using air temperature and relative humidity. Energy Policy J. 36, 571–576 (2008)

    Article  Google Scholar 

  36. Rehman S., Bader M.A., Moallem S.A.: Cost of solar energy generated using PV panels. Renew. Sust. Energy Rev. 11(8), 1843–1857 (2007)

    Article  Google Scholar 

  37. Rehman S., Shash A.A., Al-Amoudi O.S.B.: Photovoltaic technology of electricity generation for desert camping. Int. J. Glob. Energy Issues 26(2–3), 322 (2006)

    Article  Google Scholar 

  38. Al-Ali A.R., Rehman S., Al-Agili S., Al-Omari M.H., AlFayezi M.: Usage of photovoltaics in automated irrigation system. Renew. Energy 23(1), 17–26 (2001)

    Article  Google Scholar 

  39. Rehman S., Ghori S.G.: Spatial estimation of global solar radiation using geostatistics. Renew. Energy 21(3–4), 583–605 (2000)

    Article  Google Scholar 

  40. Rehman S.: Empirical model development and comparison with existing correlations. Appl. Energy 64(1–4), 369–378 (1999)

    Article  Google Scholar 

  41. Rehman S.: Solar radiation over Saudi Arabia and comparisons with empirical models. Energy 23(12), 1077–1082 (1998)

    Article  Google Scholar 

  42. Rehman, S., Halawani, T.O.: Development and utilization of solar energy in Saudi Arabia: review. Arab. J. Sci. Eng. 23(1B), 33–46 (1998)

    Google Scholar 

  43. Kersten S., Wang X., Prins W., van Swaaij W.: Biomass pyrolysis in a fluidized reactor. Part 1(Literature review and model simulations. Ind. Eng. Chem. Res. 44(23), 8773–8785 (2005)

    Google Scholar 

  44. Bridgwater A., Meier D., Radlein D.: An overview of pyrolysis of biomass. Org. Geochem. 30(12), 1479–1493 (1999)

    Article  Google Scholar 

  45. Singh J., Gu S.: Biomass conversion to energy in India—a critique. Renew. Sust. Energy Rev. 14(5), 1367–1378 (2010)

    Article  Google Scholar 

  46. Searchinger T., Heimlich R., Houghton R., Dong F., Elobeid A., Fabiosa J.: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008)

    Article  Google Scholar 

  47. Lapola D., Schaldach R., Alcamo J., Bondeau A., Koch J., Koelking C.: Indirect land-use changes can overcome carbon savings from biofuels in Brazil. PNAS 107, 3388–3393 (2010)

    Article  Google Scholar 

  48. IEA (International Energy Agency): Bioenergy: the impact of indirect land use change, summary and conclusions from the workshop on May 12 2009 in Rotterdam, The Netherlands (2009)

  49. Schubert, R., Schellnhuber, H., Buchmann, N., Epiney, A., Grießhammer, R., Kulessa, M.: Future bioenergy and sustainable land use, report of the Germand Advisory Council on global change. London, Earthscan (2009)

  50. Lee, E., Elsam, R.: Fuelling the Ecological Crisis: Six Examples of Habitat Destruction Driven by Biofuels. BirdLife International, Brussels (2008)

  51. Hennenberg K., Dragisic C., Haye S., Hewson J., Hewson J., Hewson J., Hewson J., Hewson J.: The power of bioenergy-related standards to protect biodiversity. Conserv. Biol. 24, 412–423 (2010)

    Article  Google Scholar 

  52. Berndes G.: Bioenergy and water-the implications of large-scale bioenergy production for water use and supply. Glob. Environ. Change. 12, 253–271 (2002)

    Article  Google Scholar 

  53. Gerbens-Leenes P., Hoekstra A., van der Meer T.: The water footprint of bioenergy. PNAS 106, 10219–10223 (2009)

    Article  Google Scholar 

  54. de Fraiture C., Giordano M., Liao Y.: Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10, 67–81 (2008)

    Article  Google Scholar 

  55. Tilman D., Socolow R., Foley J., Hill J., Larson E., Lynd L.: Beneficial biofuels: the food, energy, and environment trilemma. Science 325, 270–271 (2009)

    Article  Google Scholar 

  56. Pimentel D., Marklein A., Toth M., Karpoff M., Paul G., McCormack R.: Food versus biofuels: environment and economic costs. Hum. Ecol. 37, 1–12 (2009)

    Article  Google Scholar 

  57. ActionAid.: Meals per gallon: the impact of industrial biofuels on people and global hunger. ActionAid, London (2010)

  58. Wolf J., Bindraban P., Luijten J., Vleeshouwers L.: Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agric. Syst. 76, 841–861 (2003)

    Article  Google Scholar 

  59. Cotula, L., Dyer, N., Vermeulen, S.: Fuelling exclusion? The biofuels boom and poor people’s access to land. International Institute for Environment and Development, London (2008)

  60. Richert, W., Sielhorst, S.: Uitgangspunten voor Duurzame Biomassa-Deel 1: Risico’ s en kansen van de import van biomassa in Nederland. Report commissioned by Milieudefensie Nederland. AIDEnvironment, Amsterdam (2006)

  61. Energy Transition. Biomass, hot issue. Smart choices in difficult times. Report by the Biobased Raw Materials Platform, SenterNovem, Sittard (2008)

  62. Demirbas A.: Political, economic and environmental impacts of biofuels: a review. Appl. Energy 86, 108–117 (2009)

    Article  Google Scholar 

  63. Renewable Energy Policy Network for 21st Century (REN21).: Renewables 2011: Global Status Report, 13–14 (2011)

  64. Smeets E., Junginger M.W., Faaij A., Lewandowski I., Turkenburg W.: A quick scan of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 33(1), 56–106 (2007)

    Article  Google Scholar 

  65. Turcotte, D.L., Schubert, G.: Geodynamics. Cambridge University Press, Cambridge (2002)

  66. Enrico B.: Geothermal energy technology and current status: an overview. Renew. Sust. Energy Rev. 6, 3–65 (2002)

    Article  Google Scholar 

  67. Glassley, W.E.: Geothermal energy: renewable energy and the environment. CRC Press, Boca Raton (2010)

  68. Geothermal Energy Association.: Geothermal energy: international market update, May, p. 7 (2010)

  69. Renewable Energy Policy Network for 21st Century (REN21).: Renewables: Global Status Report, p. 15 (2011)

  70. Renewable Energy Policy Network for 21st Century (REN21).: Renewables: Global Status Report, Update (2009)

  71. Martinot, E., Sawin, J.: Renewables Global Status Report 2009 Update, Renewable Energy World, September 9 (2009)

  72. Honnery D., Moriarty P.: Estimating global hydrogen production from wind. Int. J. Hydrogen Energy 34, 727–736 (2009)

    Article  Google Scholar 

  73. Moriarty, P., Honnery, D.: Rise and Fall of the Carbon Civilization. Springer, London (2010)

  74. Abbasi S.A., Abbasi N.: The likely adverse environmental impacts of renewable energy sources. Appl. Energy 65, 121–144 (2000)

    Article  Google Scholar 

  75. McCartney, M.: Living with dams: managing the environmental impacts. Water Policy 11(Suppl. 1), 121–139 (2009)

  76. Pimentel D., Herz M., Glickstein M., Zimmerman M., Allen R., Becker K. et al.: Renewable energy: current and potential issues. Bioscience 52, 1111–1120 (2002)

    Article  Google Scholar 

  77. Abdillah A., Selaman O.S.: Catchment size, soil type and land use to determine the amount and likelihood of flood in the Sarawak Corridor of Renewable Energy (SCORE) Region. UNIMAS E J. Civil Eng. 1(1), 1–11 (2009)

    Google Scholar 

  78. Cho A.: Energy’s tricky tradeoffs. Science 329, 786–787 (2010)

    Article  Google Scholar 

  79. Boyles J.G., Cryan P.M., McCracken G.F., Kunz T.H.: Economic importance of bats in agriculture. Science 332, 41–42 (2011)

    Article  Google Scholar 

  80. Kuvlesky W.P. Jr., Brennan L.A., Morrison M.L., Boydston K.K., Ballard B.M., Bryant F.C.: Wind energy development and wildlife conservation: challenges and opportunities. J. Wildlife Manage. 71(8), 2487–2498 (2007)

    Article  Google Scholar 

  81. Simon C.A.: Cultural constraints on wind and solar energy in the U.S. context. Comp. Technol. Transf. Soc. 7, 251–269 (2009)

    Article  Google Scholar 

  82. Dean W.D.: Wind turbine mechanical vibrations: potential environmental threat. Energy Environ. 19(2), 303–307 (2008)

    Article  Google Scholar 

  83. Kunz T.H., Arnett E.B., Erickson W.P., Hoar A.R., Johnson G.D., Larkin R.P. et al.: Ecological impacts of wind energy development on bats: questions, research needs and hypotheses. Front. Ecol. Environ. 5(6), 315–324 (2007)

    Article  Google Scholar 

  84. Moriarty P., Honnery D.: Liquid fuels from woody biomass. Int. J. Glob. Energy Issues 27(2), 103–114 (2007)

    Article  Google Scholar 

  85. Makarieva A.M., Gorshkov V.G., Li B.L.: Energy budget of the biosphere and civilization: rethinking environmental security of global renewable and nonrenewable resources. Ecol. Complex 5, 281–288 (2008)

    Article  Google Scholar 

  86. Tsoutsos T., Frantzeskaki N., Gekas V.: Environmental impacts from the solar energy technologies. Energy Policy 33, 289–96 (2005)

    Google Scholar 

  87. Luque, A., Heguedos, S.: Handbook of Photovoltaic Science and Engineering. Wiley, West Sussex (2003)

  88. Kintisch E.: Out of site. Science 327, 788–789 (2010)

    Article  Google Scholar 

  89. Majer E.L., Baria R., Stark M., Oates S., Bommer J., Smith B., Asanuma H.: Induced seismicity associated with enhanced geothermal systems. Geothermics 36, 185–222 (2007)

    Article  Google Scholar 

  90. Swain, A., Chee A.M.: Political structure and ‘Dam’ conflicts: Comparing cases in Southeast Asia. In: Water and Politics: Understanding the Role of Politics in Water Management. World Water Council, Marseilles, pp. 95–114 (2004)

  91. Lee, R.: Environmental impacts of energy use. In: Robert Bent, Lloyd, Orr, Baker, Randall (eds.), Energy: Science, Policy, and the Pursuit of Sustainability. Island Press, Washington, pp. 77–108 (2002)

  92. Mamit, J.D.: Social and environmental impacts of hydroelectric dam development: the Bakun HEP example in Sarawak, Malaysia. In: Keynote Address presented at Third International Conference on Water and Renewable Energy Development in Asia, Kuching, Sarawak, Malaysia, 29–30 March (2010)

  93. Sovacool B.K., Bulan L.C.: Behind an ambitious megaproject in Asia: The history and implications of the Bakun hydroelectric dam in Borneo. Energy Policy 39, 4842–4859 (2011)

    Article  Google Scholar 

  94. Choy K.Y.: Energy demand, economic growth, and energy efficiency: the Bakun Dam-induced sustainable Energy Policy Revisited. Energy Policy 33, 679–689 (2005)

    Article  Google Scholar 

  95. Whish-Wilson P.: The Aral Sea Environmental Health Crisis. J. Rural Remote Environ. Health 1(2), 29–34 (2002)

    Google Scholar 

  96. Huang, C.Z.: Guideline for China Flood Control. China Liberation Army Press, China (1998)

  97. Stupak I., Asikainen A., Jonsell M., Karltun E., Lunnan A. et al.: Sustainable utilization of forest biomass for energy—possibilities and problems: Policy, legislation, certification, and recommendations and guidelines in the Nordic, Baltic, and other European countries. Biomass Bioenergy 31(10), 666–684 (2007)

    Article  Google Scholar 

  98. Ren, D.: Effects of global warming on wind energy availability. J. Renew. Sust. Energy 2(052301), 5 (2010)

    Google Scholar 

  99. Saidur R., Rahim N.A., Islam M.R., Solangi K.H.: Environmental impact of wind energy. Renew. Sust. Energy Rev. 15, 2423–2430 (2011)

    Article  Google Scholar 

  100. Pryor S.C., Barthelmie R.J.: Climate change impacts on wind energy: a review. Renew. Sust. Energy Rev 14, 430–437 (2010)

    Article  Google Scholar 

  101. REN21. Global status report. Paris: REN21 Secretariat; 2005 to 2011 Issues

  102. IEA. International Energy Agency Database Vol. 2010, Release 01: (a) Energy Balances of Non-OECD Member Countries; (b) Energy Balances of OECD Member Countries; 2009

  103. IEA-PVPS.: Trends in photovoltaic applications: survey report of selected IEA countries between 1992 and 2006. IEA Photovoltaic Power Systems Program (2007)

  104. McCluney, R.: Renewable Energy Limits. The Final Energy Crisis. Pluto Press, London (2004)

  105. Odum, H.T.: Net Energy Analysis of Alternatives for United States. Part 1, Middle and Long Term Energy Policies and Alternatives. US Government Printing Office, Serial No. 94–63 (1976)

  106. U.S. Department of Energy. http://www.energysavers.gov/renewable_energy/solar/index.cfm/mytopic=50012 (2012). Accessed 10 June 2012

  107. Muselli M., Notton G., Louche A.: Design of hybrid-photovoltaic power generator, with optimization of energy management. Solar Energy 65(3), 143–157 (1999)

    Article  Google Scholar 

  108. Bagen B.R.: Evaluation of different operating strategies in small stand-alone power systems. IEEE Trans. Energy Convers. 20(3), 654–660 (2005)

    Article  Google Scholar 

  109. Himri Y., Boudghene S.A., Draoui B., Himri S.: Techno-economical study of hybrid power system for a remote village in Algeria. Energy 33, 1128–1136 (2008)

    Article  Google Scholar 

  110. Rehman S., Mahbub A.M., Meyer J.P., Al-Hadhrami L.M.: Feasibility study of a wind–pv–diesel hybrid power system for a village. Renew. Energy 38(1), 258–268 (2012)

    Article  Google Scholar 

  111. Rahman F., Rehman S., Abdul Majeed M.A.: Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia. Renew. Sust. Energy Rev. 16(1), 274–283 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Zahedi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Azarpour, A., Suhaimi, S., Zahedi, G. et al. A Review on the Drawbacks of Renewable Energy as a Promising Energy Source of the Future. Arab J Sci Eng 38, 317–328 (2013). https://doi.org/10.1007/s13369-012-0436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0436-6

Keywords

  • Renewable energy
  • Wind
  • Geothermal
  • Solar
  • Biomass
  • Source