Skip to main content
Log in

The Effect of Sintering on the Physical and Optical Properties of Nano-TiO2 Synthesized Via a Modified Hydrothermal Route

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A nano-titanium dioxide (nano-TiO2) powder, with Zr (0.5–1 %) and Nb (0.5–1 %) impurities, is fabricated using a modified hydrothermal method, with low-grade mineral precursors. Samples were then sintered at 600, 800, and 1,000 °C, then analysed using XRD (crystallite size and phase conversion temperature) scanning electron microscope (SEM) (morphology), N2 adsorption–desorption isotherms (surface area), and UV–vis–NIR (absorbance and optical transmission) to study the effects of sintering on the structural and optical properties of the synthesized nanopowders. It was discovered that sintering to 1,000 °C reduces the surface area by 99 %, and increases the crystallite size by almost 2,000 %. Meanwhile, the phase conversion temperature of this sample is 33.3 % higher than that reported in the literature for 600 °C. SEM shows an extensive agglomeration and uneven distribution of nano-TiO2 particles before sintering. However, the sintered sample shows uniformity in particle size and distribution, and even though it is reduced significantly, agglomeration is still present. The absorbance of the samples is red-shifted towards the visible region (i.e., 380–700 nm), with the optical band-gap reduced by 10 %, when sintered to 1,000 °C. The optical transmission of nano-TiO2 is also reduced by 10 % when sintered to 1,000 °C, due to changes in its microstructure. It is therefore concluded that sintering nano-TiO2 improves its structural and optical properties, and paves the way for a multitude of novel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Negishi N., Takeuchi K., Ibusuki T.: The surface structure of titanium dioxide thin film photocatalyst. Appl. Surf. Sci. 121/122, 417–420 (1997)

    Article  Google Scholar 

  2. Hussain, M.; Ceccarelli, R.; Marchisio, D.L.; Fino, D.; Russo, N.; Geobaldo, F.: Synthesis, characterization and photocatalytic application of novel TiO2 nanoparticles. Chem. Eng. J. 157, 45–51 (2010)

    Google Scholar 

  3. Kang, M.; Lee, S.-Y.; Chung, C.-H.; Cho, S.M.; Han, G.Y.; Kim, B.-W.; Yoon, K.J.: Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl3 decomposition. J. Photoch. Photobio. A 144, 185–191 (2001)

    Google Scholar 

  4. Wu, L.; Yu, J.C.; Wang, X.; Zhang, L.; Yu, J.: Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol solvothermal process at a low temperature. J. Solid State Chem. 178, 321–328 (2005)

    Google Scholar 

  5. Zhao, X.; Liu, M.; Zu, Y.: Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films. 515, 7127–7134 (2007)

    Google Scholar 

  6. Dong L., Cheng K., Weng W., Song C., Du P., Shen G., Han G.: Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates. Thin Solid Films. 519, 4634–4640 (2011)

    Article  Google Scholar 

  7. Karuppuchamy, S.; Nonomura, K.; Yoshida, T.; Sugiura, T.; Minoura, H.: Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics. 151 19–27 (2002)

    Google Scholar 

  8. Guo, W.; Lin, Z.; Wanga, X.; Song, G.: Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectron. Eng 66, 95–101 (2003)

    Google Scholar 

  9. Chen X., Mao S.: Titanium dixoide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  10. Hidaka, H.; Ajisaka, K.; Horikoshi, S.; Ogawa, T.; Takeuchi, K.; Zhao, J.; Serpone, N.: Comparative assessment of the efficiency of TiO2/OTE thin film electrodes fabricated by three deposition methods: photoelectrochemical degradation of the DBS anionic surfactant. J. Photochem. Photobio. A 138, 185–192 (2001)

    Google Scholar 

  11. Muniz, E.C.; Góes, M.S.; Silva, J.J.; Varela, J.A.; Joanni, E.; Parra, R.; Bueno, P.R.: Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol–gel method for application in dye solar cells. Ceram. Int. 37, 1017–1024 (2011)

    Google Scholar 

  12. Castro, A.L.; Nunes, M.R.; Carvalho, A.P.; Costa, F.M.; Florencio, M.H.: Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity. Solid State Sci. 10, 602–606 (2008)

    Google Scholar 

  13. Swanepoel, R.: Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E 17, 896 (1984)

    Google Scholar 

  14. Liu, Z.Y.; Sun, D.D.; Guo, P.; Leckie, J.O.: One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates. Chem. Eur. J. 13, 1851–1855 (2007)

    Google Scholar 

  15. Estrellan C.R., Salim C., Hinode H.: Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide. J. Hazard. Mater. 179, 79–83 (2010)

    Article  Google Scholar 

  16. Verma, A.; Basu, A.; Bakhshi, A.K.; Aghihotry, S.A.: Structural, optical and electrochemical properties of sol–gel derived TiO2 films: annealing effects. Solid State Ionics. 176, 2285–2295 (2005)

    Google Scholar 

  17. Ou, H.-H.; Lo, S.-L.: Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep. Purif. Technol. 58, 179–191 (2007)

    Google Scholar 

  18. Li, Y.; Sun, X.; Li, H.; Wang, S.; Wei, Y.: Preparation of anatase TiO2 nanoparticles with high thermal stability and specific surface area by alcohothermal method. Powder Technol. 194, 149–152 (2009)

    Google Scholar 

  19. Jiang, Y.; Yin, H.; Sun, Y.; Liu, H.; Lei, L.; Chen, K.; Wada, Y.: Effects of organic acids on the size-controlled synthesis of rutile TiO2 nanorods. Appl. Surf. Sci. 253, 9277–9282 (2007)

    Google Scholar 

  20. Kim D.S., Kwak S.-Y.: The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl. Catal. A-Gen. 323, 110–118 (2007)

    Article  Google Scholar 

  21. Wang, Z.; Chen, C.; Wu, F.: Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. J. Hazard. Mater. 164, 615–620 (2009)

    Google Scholar 

  22. Zhang, Y.X.; Li, G.H.; Wu, Y.C.; Luo, Y.Y.; Zhang, L.D.: The formation of mesoporous TiO2 spheres via a facile chemical process. J. Phys. Chem. B 109, 5478–5484 (2005)

    Google Scholar 

  23. Mu, R.; Xu, Z.; Li, L.; Shao, Y.; Wan, H.; Zheng, S.: On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction. J. Hazard. Mater. 176, 495–502 (2010)

    Google Scholar 

  24. Fen L.B., Han T.K., Nee N.M., Ang B.C., Johan M.R.: Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment. Appl. Surf. Sci. 258, 431–435 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Mahdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdi, E.M., Hamdi, M. & Meor Yusoff, M.S. The Effect of Sintering on the Physical and Optical Properties of Nano-TiO2 Synthesized Via a Modified Hydrothermal Route. Arab J Sci Eng 38, 1701–1711 (2013). https://doi.org/10.1007/s13369-012-0384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0384-1

Keywords

Navigation