Arabian Journal for Science and Engineering

, Volume 38, Issue 7, pp 1681–1689 | Cite as

Ni2+ Selective Membrane Sensors Based on Sulfamethoxazole Diazonium Resorcinol in Poly (Vinyl Chloride) (PVC) Matrix

  • Fathi A. G. Elsaid
  • Salem Hamza
  • Nashwa Rizk
  • Hamdy A. B. Matter
  • Elsayda A. S. Amerah
Open Access
Research Article - Chemistry
  • 1.1k Downloads

Abstract

PVC-based membranes of sulfamethoxazole diazonium resorcinol (SDR) as electroactive material with dioctylphthalate (DOP), Dioctylsebacate (DOS), o- Nitroph enyloctylether (o-NPOE) as plasticizing solvent mediators have been found to act as Ni2+ selective sensor, the best performance was obtained with the sensor having a membrane of composition plasticizer:PVC:ionophore in the ratio 200:100:5 mg. The sensor exhibits Nernstian response in the activity range 5 × 10−6 to 1.0 × 10−1 M, performs satisfactorily over a wide pH range (5–9), with a fast response time (10 s). The sensor was found to work satisfactorily in partially different internal solution concentrations and could be used over a period of 2 months. Potentiometric selectivity coefficients determined by matched potential method (MPM) indicate excellent selectivity for Ni2+ ions. The sensors could be used successfully in the estimation of nickel as an indicator electrode in potentiometric titration.

Keywords

Poly (vinyl chloride) PVC membrane Nernstian slopes Nickel ion sensor Potentiometry Ion selective electrodes Sulfamethoxazole diazonium resorcinol 

References

  1. 1.
    Templeton D.: Biological Monitoring of Chemical Exposure in the Workplace. World Health Organization, Geneva (1990)Google Scholar
  2. 2.
    Kristiansen J., Christensen J.M., Henriksen T., Nielsen N.H., Menne T.: Determination of nickel in fingernails and forearm skin (Stratum Corneum). Anal. Chim. Acta 403, 265 (2000)CrossRefGoogle Scholar
  3. 3.
    Gupta V.K., Jain A.K., Singh L.P., Khurana U.: Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel (II). Anal. Chim. Acta 355, 33 (1997)CrossRefGoogle Scholar
  4. 4.
    Singh L.P., Bhatnager J.M.: PVC Based Selective Sensors for Ni2+ Ions Using Carboxylated and Methylated Porphine. Sensors 3, 393 (2003)CrossRefGoogle Scholar
  5. 5.
    Mousavi M.F., Alizadeh N., Shamsipur M., Zohari N.: A new PVC-based 1, 10-dibenzyl-1, 10-diaza-18-crown-6 selective electrode for detecting nickel (II) ion. Sens. Actuator B 66, 98 (2000)CrossRefGoogle Scholar
  6. 6.
    Shamsipur, M.; Kazemi, S.Y.: A PVC-based dibenzodiaza-15-crown-4 membrane potentiometric sensor for Ni (II). Electroanalysis 12, 1472 (2000)Google Scholar
  7. 7.
    Hampton M.D., Peters C.A., Wellington L.A.: Response of poly (vinyl chloride) electrodes based on the neutral carrier 1, 4, 7, 10-tetraoxacyclododecane). Anal. Chim. Acta 194, 171 (1987)CrossRefGoogle Scholar
  8. 8.
    Gupta V.K., Goyal R.N., Agarwal S., Kumar P., Bachheti N.: Nickel (II)-selective sensor based on dibenzo-18-crown-6 in PVC matrix. Talanta 71, 795 (2007)CrossRefGoogle Scholar
  9. 9.
    Jain A.K., Gupta V.K., Singh R.D., Khurana U., Singh L.P.: Nickel (II)-selective sensors based on heterogeneous membranes of macrocyclic compounds. Sens. Actuators B 40, 15 (1997)CrossRefGoogle Scholar
  10. 10.
    Gupta V.K., Prasad R., Kumar P., Mangla R.: New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix. Anal. Chim. Acta 420, 19 (2000)CrossRefGoogle Scholar
  11. 11.
    Gupta V.K., Prasad R., Kumar A.: Cu (II) selective sensor based on 5, 7, 12, 14-tetramethyldibenzo [b,i]-1,4,8,11-tetraazacyclotetradecane in PVC matrix. Sensors 2, 384 (2002)CrossRefGoogle Scholar
  12. 12.
    Rao, G.N.; Srivastava, S.; Srivastava, S.K.; Singh, M.: Chelating ion-exchange resin membrane sensor for nickel (II) ions. Talanta 43, 1821 (1996)Google Scholar
  13. 13.
    Gyrdasova, I.O.; Volkov, V.L.: J. Anal. Chem. 52, 764 (1997)Google Scholar
  14. 14.
    Mazloum, M.; Niassary, M.; Amini, M.K.: Pentacyclooctaaza as a neutral carrier in coated-wire ion-selective electrode for nickel (II). Sens. Actuators B 82, 259 (2002)Google Scholar
  15. 15.
    Shamsipur M., Poursaberi T., Karami A.R., Hosseini M., Momeni A., Alizadeh A., Yousefi M., Ganjali M.R.: Development of a new fluorimetric bulk optode membrane based on 2,5-thiophenylbis (5-tert-butyl-1, 3-benzexazole) for nickel(II) ions. Anal. Chim. Acta 501, 55 (2004)CrossRefGoogle Scholar
  16. 16.
    Yari A., Azizi S., Kakanejadifard A.: An electrochemical Ni (II)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sens. Actuators B 119, 167 (2006)CrossRefGoogle Scholar
  17. 17.
    Mashhadiazadeh H., Sheikhshoaie I., Saeid-Nia S.: Nickel (II)-selective membrane potentiometric sensor using a recently synthesized Schiff base as neutral carrier. Sens. Actuators B 94, 241 (2003)CrossRefGoogle Scholar
  18. 18.
    Jain, A.K.; Gupta, V.K.; Ganeshpure, P.A.; Raisoni, J,: Ni (II)-selective ion sensors of salen type Schiff base chelates. Anal. Chim. Acta 553, 177 (2005)Google Scholar
  19. 19.
    Kumar K.G., Poduval R., John S., Augustine P.: A PVC plasticized membrane sensor for nickel ions. Microchim. Acta 156, 283 (2007)Google Scholar
  20. 20.
    Buchanan B.: New coated-wire cobalt (II)-selective electrode based on the benzalkonium tetrathiocyanatocobaltate (II) ion pair. Anal. Chem 40, 517 (1968)CrossRefGoogle Scholar
  21. 21.
    Lal U.S., Chattopadhyaya M.C., Dey A.K.: A Manganese (II) sensitive electrode using cation exchange resin. J. Ind. Chem. Soc. 59, 493 (1982)Google Scholar
  22. 22.
    Luca, C.; Pleniceanu, M.; Muresan, N.: Liquid membrane electrode for determination of nickel. Rev. Rom. Chim. 27, 1088 (1976)Google Scholar
  23. 23.
    Pleniceanu M., Isvoranu M., Spinu C.: Potentiometric determination of copper and nickel. J. Ind. Chem. Soc. 79, 884 (2002)Google Scholar
  24. 24.
    Pleniceanu M., Isvoranu M., Spinu C.: Spectrophotometric study of the binary system Ni(II)-N-[2-Thyenilmethyliden]-2-Aminothyazole and theDetermination of Ni(II). Seria Chim. 30, 9 (2001)Google Scholar
  25. 25.
    Reglinski, J.; Morris, S.; Stevenson, D.E.: Supporting conformational change at metal centres. Part 2: four and five coordinate geometry. Polyhedron 21, 2175 (2002)Google Scholar
  26. 26.
    Yamada S.: Schiff base nickel (II) complexes with coordination number exceeding four. Coord. Chem. Rev. 190, 537 (1999)CrossRefGoogle Scholar
  27. 27.
    Memon S., Yilmaz M., Macromol J.: Estimation of chromium(VI) adsorption efficiency of . . . behavior of calix[6]arene ester derivative. Sci. Pure Appl. Chem. 39, 63 (2002)Google Scholar
  28. 28.
    Cimerman Z., Galic N., Bosner B.: The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Anal. Chim. Acta 343, 145 (1997)CrossRefGoogle Scholar
  29. 29.
    Gurnule W.B., Rahangadale P.K., Paliwal L.J., Kharat R.B.: Ion-exchange properties of 4-hydroxyacetophenone-biuret-formaldehyde tercopolymer. Ult. Sci. Phys. Sci. 15, 89 (2003)Google Scholar
  30. 30.
    Sima J., Fodran P., Hledik J., Kotocova A., Valigura D.: Inorgan. Chim. Acta 81, 143 (1984)Google Scholar
  31. 31.
    Belokon, Y.N.; Bespalova, N.B.; Churkina, D.T.; Cisarova, I.; Ezernitskaya, M.G.; Harutyunyan, R.S.; Hrdina, R.; Kagan, H.B.; Kocovsky, P.; Kochetkov, K.A.; Larionov, O.V.; Lyssenko, K.A.; North, M.; Polasek, M.; Peregudov, A.S.; Prisyazhnyuk, V.V.; Vyskocil, S.: Nickel(II) complexes of glycine-derived Schiff bases. J. Am. Chem. Soc. 125, 12860 (2003)Google Scholar
  32. 32.
    Cozzi P.G.: Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 33, 410 (2004)CrossRefGoogle Scholar
  33. 33.
    Gupta V.K., Jain A.K., Ishtaiwi Z., Langb H., Maheshwari G.: Ni2+ selective sensors based on meso-tetrakis-4-[tris-(4-allyl dimethylsilyl-phenyl)-silyl]-phenyl porphyrin and (sal) 2trien in poly (vinyl chloride) matrix. Talanta 73, 803 (2007)CrossRefGoogle Scholar
  34. 34.
    Gupta V.K., Singh A.K., Pal M.K.: Ni (II) selective sensors based on Schiff bases membranes in poly(vinyl chloride). Analyt. Chim. Acta 624, 223 (2008)CrossRefGoogle Scholar
  35. 35.
    Li L., Lafdi K.: Nickel modification of carbon nanotubes grown on graphite for electrochemical sensors. Sens. Actuators B Chem. 132(1), 202 (2008)CrossRefGoogle Scholar
  36. 36.
    Afkhami A., Tarighat MA., Khanmohammadi H.: Simultaneous determination of Co2+, Ni2+, Cu2+ and Zn2+ ions in foodstuffs and vegetables with a new Schiff base using artificial neural networks. Talanta 77(3), 995 (2009)CrossRefGoogle Scholar
  37. 37.
    Yari A., Gholivand M.B., Rahhedayat F.: Development and characterization of a new nickel (II) ion selective optode based on 2-amino-1-cyclopentene-dithiocarboxylic acid. Measurement 44(9), 1691 (2011)CrossRefGoogle Scholar
  38. 38.
    Aouarram A., Riaño M.D.G., Vargas M.G., Stitou M., El Yousfi F.: A permeation liquid membrane system for determination of nickel in seawater. Talanta 71(1), 165 (2007)CrossRefGoogle Scholar
  39. 39.
    Mashhadizadeh M.H., Momeni A.: Nickel (II) selective membrane potentiometric sensor using a recently synthesized mercapto compound as neutral carrier. Talanta 59(1), 47 (2003)CrossRefGoogle Scholar
  40. 40.
    Takeuchi, R.M.; Santos, A.L.; Padilha, P.M.; Stradiotto, N.R.: A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica for differential pulse adsorptive stripping analysis of nickel in ethanol fuel. Analyt. Chim. Acta 584(2), 295 (2007)Google Scholar
  41. 41.
    Mazloum M, Niassary MS, Amini M.K.: Pentacyclooctaaza as a neutral carrier in coated-wire ion-selective electrode for nickel (II). Sensors and Actuators B: Chemical 82(2–3), 259 (2002)CrossRefGoogle Scholar
  42. 42.
    Mousavi M.F., Alizadeh N., Shamsipur M., Zohari N.: A new PVC-based 1, 10-dibenzyl-1, 10-diaza-18-crown-6 selective electrode for detecting nickel (II)ion. Sens. Actuat. B Chem. 66(1–3), 98 (2000)CrossRefGoogle Scholar
  43. 43.
    Candir S., Narin I., Soylak M.: Ligandless cloud point extraction of Cr (III), Pb (II), Cu (II), Ni (II), Bi (III), and Cd (II) ions in environmental samples with Tween 80 and flame atomic absorption spectrometric determination. Talanta 77(1), 289 (2008)CrossRefGoogle Scholar
  44. 44.
    Ghaedi M., Shokrollahi A., Ahmadi F., Rajabi H.R., Soylak M.: Cloud point e × traction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. J. Hazard. Mater. 150(3), 533 (2008)CrossRefGoogle Scholar
  45. 45.
    Chen S., Xiao M., Lu D., Wang Z.: The use of carbon nanofibers microcolumn preconcentration for inductively coupled plasma mass spectrometry determination of Mn, Co and Ni. Spectrochim. Acta Part B Atomic Spectrosc. 62(11), 1216 (2007)CrossRefGoogle Scholar
  46. 46.
    Zarei K., Atabati M., Malekshabani Z.: Simultaneous spectrophotometric determination of iron, nickel and cobalt in micellar media by using direct orthogonal signal correction-partial least squares method. Analyt. Chim. Acta 556(1), 247 (2006)CrossRefGoogle Scholar
  47. 47.
    Zhao S.L., Xia X.Q., Ma H.R., Xi H.J.: Spectrophotometric determination of nickel with p-acetylarsenazo. Talanta 41(8), 1353 (1994)CrossRefGoogle Scholar
  48. 48.
    Mohanapriya S., Lakshminarayanan V.: Simultaneous purification and spectrophotometric determination of nickel present in as-prepared single-walled carbon nanotubes (SWCNT). Talanta 71(1), 493 (2007)CrossRefGoogle Scholar
  49. 49.
    Vendramini D., Grassi V., Zagatto E.A.G.: Spectrophotometric flow-injection determination of copper and nickel in plant digests exploiting differential kinetic analysis and multi-site detection. Analyt. Chim. Acta 570(1), 124 (2006)CrossRefGoogle Scholar
  50. 50.
    Magni D.M., Olivieri AC., Bonivardi A.L.: Artificial neural networks study of the catalytic reduction of resazurin: stopped-flow injection kinetic-spectrophotometric determination of Cu (II) and Ni (II). Analyt. Chim. Acta 528(2), 275 (2005)CrossRefGoogle Scholar
  51. 51.
    Chamjangali M.A., Bagherian G., Azizi G.: Simultaneous determination of cobalt, nickel and palladium in micellar media using partial least square regression and direct orthogonal signal correction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 62(1–3), 189 (2005)CrossRefGoogle Scholar
  52. 52.
    Yoshikuni N., Baba T., Tsunoda N., Oguma K.: Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel. Talanta 66(1), 40 (2005)CrossRefGoogle Scholar
  53. 53.
    Ghaedi M.: Selective and sensitized spectrophotometric determination of trace amounts of Ni (II) ion using α-benzyl dioxime in surfactant media. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 66(2), 295 (2007)CrossRefGoogle Scholar
  54. 54.
    Fakhari A.R., Khorrami A.R., Naeimi H.: Synthesis and analytical application of a novel tetradentate N2O2 Schiff base as a chromogenic reagent for determination of nickel in some natural food samples. Talanta 66(4), 813 (2005)CrossRefGoogle Scholar
  55. 55.
    Shokoufi N., Shemirani F., Memarzadeh F.: Fiber optic-linear array detection spectrophotometry in combination with cloud point extraction for simultaneous preconcentration and determination of cobalt and nickel. Analyt. Chim. Acta 601(2), 204 (2007)CrossRefGoogle Scholar
  56. 56.
    Patil, S.A.; Unki, S.N.; Kulkarni, A.D.; Naik, V.H.; Badami, P.S.: Co (II), Ni (II) and Cu (II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79(5), 1128 (2011)Google Scholar
  57. 57.
    Reddy K.H., Prasad N.B.L., Reddy T.S.: Analytical properties of 1-phenyl-1, 2-propanedione-2-oxime thiosemicarbazone: simultaneous spectrophotometric determination of copper (II) and nickel (II) in edible oils and seeds. Talanta 59(3), 425 (2003)CrossRefGoogle Scholar
  58. 58.
    Ghasemi J., Shahabadi N., Seraji H.R.: Spectrophotometric simultaneous determination of cobalt, copper and nickel using nitroso-R-salt in alloys by partial least squares. Analyt. Chim. Acta 510(1), 121 (2004)CrossRefGoogle Scholar
  59. 59.
    Öztürk, B.D.; Filik, H.; Tütem, E.; Apak, R.: Simultaneous derivative spectrophotometric determination of cobalt (II) and nickel (II) by dithizone without extraction. Talanta 53(1), 263 (2000)Google Scholar
  60. 60.
    Amini M.K., Isfahani T.M., Khorasani J.H., Pourhossein M.: Development of an optical chemical sensor based on 2-(5-bromo-2-pyridylazo)-5-(diethylamino) phenol in Nafion for determination of nickel ion. Talanta 63(3), 713 (2004)CrossRefGoogle Scholar
  61. 61.
    Vicente S., Maniasso N., Queiroz Z.F., Zagatto E.A.G.: Spectrophotometric flow-injection determination of nickel in biological materials. Talanta 57(3), 475 (2002)CrossRefGoogle Scholar
  62. 62.
    Chimpalee N., Chimpalee D., Keawpasert P., Burns D.T.: Flow injection extraction spectrophotometric determination of nickel using bis(acetylacetone)ethylenediimine. Analyt. Chim. Acta 408(1–2), 123 (2000)CrossRefGoogle Scholar
  63. 63.
    Sözgen K., Tütem E.: Second derivative spectrophotometric method for simultaneous determination of cobalt, nickel and iron using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Talanta 62(5), 971 (2004)CrossRefGoogle Scholar
  64. 64.
    Sheng N., Cai W., Shao X.: An approach by using near-infrared diffuse reflectance spectroscopy and resin adsorption for the determination of copper, cobalt and nickel ions in dilute solution. Talanta 79(2), 339 (2009)CrossRefGoogle Scholar
  65. 65.
    Liu Y., Chang X., Wang S., Guo Y., Din B., Meng S.: Solid-phase spectrophotometric determination of nickel in water and vegetable samples at sub-μg l−1 level with o-carboxylphenyldiazoaminoazobenzene loaded XAD-4. Talanta 64(1), 160 (2004)CrossRefGoogle Scholar
  66. 66.
    Ebdelli R., Rouis A., Mlika R., Bonnamour I., Renault N.J., Ben Ouada H., Davenas J.: Electrochemical impedance detection of Hg2+, Ni2+ and Eu3+ ions by a new azo-calix[4]arene membrane. J. Electroanalyt. Chem. 661(1), 31 (2011)Google Scholar
  67. 67.
    Garrido G., Rà àfols C., Bosch E.: Isothermal titration calorimetry of Ni (II) binding to histidine and to N-2-aminoethylglycine. Talanta 84(2), 347 (2011)CrossRefGoogle Scholar
  68. 68.
    Srivustuvu S.K., Gupta V.K., Juin S.: A PVC-based Benzo-15-Crown-5 membrane. Sensor for cadmium. Electroanalysis 8, 938 (1996)CrossRefGoogle Scholar
  69. 69.
    Gupta V.K., Kumar P.: Cadmium (II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix. Analyt. Chim. Acta 389, 205 (1999)CrossRefGoogle Scholar
  70. 70.
    Gupta, V.K.; Chandra, S.; Mangla, R.: Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim. Acta 47, 1579 (2002)Google Scholar
  71. 71.
    Gupta V.K., Al Khayat M., Singh A.K., Pal M.K.: Nano level detection of Cd (II) using poly (vinyl chloride) based membranes of Schiff bases. Anal. Chim. Acta 634(1), 36 (2009)CrossRefGoogle Scholar
  72. 72.
    Gupta V.K., Kumar P., Mangla R.: A new Zn2+-selective sensor based on 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine in PVC matrix. Electroanalysis 12(9), 752 (2000)CrossRefGoogle Scholar
  73. 73.
    Gupta, V.K.; Mangla, R.; Agarwal, S.: Pb (II) selective potentiometric sensor based on. 4-tert-butylcalix [4]arene in PVC matrix. Electroanalysis 14, 1127 (2002)Google Scholar
  74. 74.
    Srivastava S.K., Gupta V.K., Jain S.: Tin (II) selective PVC membrane electrode based on of Salicylaldehyde thiosemicarbazone (STSC) as an ionophore. Analyst 120, 495 (1995)CrossRefGoogle Scholar
  75. 75.
    Jain A.K., Gupta V.K., Singh L.P.: A comparative study of Pb2+selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochimica Acta 51(12), 2547 (2006)CrossRefGoogle Scholar
  76. 76.
    Gupta V.K.: Iron (III) Selective electrode based on S-Methyl N-(Methylcarbamoyloxy) thioacetimidate as a sensing material. J. Electrochem. Sci. 6(30), 650 (2011)Google Scholar
  77. 77.
    Gupta, V.K.; Goyal, R.N.; Jain, A.K.; Sharma, R.A.: Aluminium (III)-selective PVC membrane sensor based on a Schiff base complex of N, N′-bis (salicylidene)-1, 2-cyclohexanediamine. Electrochim. Acta 54, 3218 (2009)Google Scholar
  78. 78.
    Singh A.K., Gupta V.K., Gupta B.: Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal. Chim. Acta 585(1), 171 (2007)CrossRefGoogle Scholar
  79. 79.
    Gupta V.K., Singh A.K., Al Khayat M.: Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Analyt. Chim. Acta 590(1), 81 (2007)CrossRefGoogle Scholar
  80. 80.
    Rofouei K.M., Arab P., Gupta V.K.: Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion (II). J. Hazard. Mater. 183, 402 (2010)CrossRefGoogle Scholar
  81. 81.
    Srivastava, S.K.; Gupta, V.K.; Jain, S.: PVC-based 2, 2, 2-Cryptand. Anal. Chem. 68, 1272 (1996)Google Scholar
  82. 82.
    Gupta V.K., Goyal R.N.: An electrochemical cell configuration incorporating an ion conducting membrane separator between reference and working electrode. Int. J. Electrochem. Sci. 4(1), 156 (2009)Google Scholar
  83. 83.
    Pleniceanu, M.; Preda, M.; Muresan, M.; Simoiu, L.: A selective spectrofluorimetric method for the determination of aminocephalos-porins in formulations and biological fluids. Anal. Lett. 29, 1485 (1996)Google Scholar
  84. 84.
    Diaz, M.T.; Bakker, E.: Comparative studies of praseodymium(III) selective sensors based on newlysynthesized Schiff’s bases. Anal. Chem. 73, 5582 (2001)Google Scholar
  85. 85.
    Heier, P.C.; Ammann, D.; Morf, W.E.; Simon, W.; Koryta, J. (Ed.): Medical and Biological Application of Electrochemical Devices. Wiley, New York (1980)Google Scholar
  86. 86.
    de Los A.M., Perez A., Martin L.P., Quintana J.C., Pedram M.Y.: Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sens. Actuators B 89, 262 (2003)CrossRefGoogle Scholar
  87. 87.
    Vogel’s, A.I.: Textbook of Practical Organic Chemistry, 5th edn., chap. 2 Longman Group, UK (1989)Google Scholar
  88. 88.
    Gehring P.M., Morf W.E., Welti M., Pretsch E., Simon W.: Catalysis of ion transfer by tetraphenylborates in neutral carrier-based ion-selective electrodes. Helv. Chim. Acta 73, 203 (1990)CrossRefGoogle Scholar
  89. 89.
    Christian, G.D.: Analytical Chemistry, 6th edn., Chap. 6. Wiley, NJ (2003)Google Scholar
  90. 90.
    Kumar, K.G.; Poduval, R.; Augustine, P.; John, S.; Saraswathyamma, B.: A PVC plasticized sensor for Ni (II) ion based on a simple ethylenediamine derivative. Anal. Sci. 22, 1333 (2006)Google Scholar
  91. 91.
    Yari A., Azizi S., Kakanejadifard A.: An electrochemical Ni (II)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sens. Actuators B 119, 167 (2006)CrossRefGoogle Scholar
  92. 92.
    Singh AK., Singh R.: Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases. J. Incl. Phenom. Macrocycl. Chem. 53, 249 (2005)CrossRefGoogle Scholar
  93. 93.
    Belhamel K., Ludwig R., Benamor M.: Nickel ion-selective membrane electrodebased on new t-octylcalix[6]arene derivative. Microchim. Acta 149, 145 (2005)CrossRefGoogle Scholar
  94. 94.
    Gupta V.K., Singh A.K., Pal M.K.: Ni(II) selective sensors based on Schiff bases membranes in poly(vinyl chloride). Analyt. Chim. Acta 624(2), 223 (2008)CrossRefGoogle Scholar
  95. 95.
    Dietrich, B.; Viout, P.; Lehn, J.M.: Macrocyclic Chemistry, pp. 384–386. V.C.H. Weinheim, Germany (1993)Google Scholar
  96. 96.
    Kimura E.: Developments in functionalization of macrocyclic polyamines. Pure Appl. Chem. 61, 823 (1989)CrossRefGoogle Scholar
  97. 97.
    Dietrich, B.; Viout, P.; Lehn, J.M.: Macrocyclic Chemistry, pp. 387–389. V.C.H. Weinheim, Germany (1993)Google Scholar
  98. 98.
    Gadzekpo V.P., Christian G.D.: Determination of selectivity coefficients of ion-selective electrodes by a matched-potential method. Analyt. Chim. Acta 164, 279 (1984)CrossRefGoogle Scholar
  99. 99.
    Bakker, E.; Pretsch, E.; Bhulmann, P.: Carrier-based ion-selective electrodes and bulk optodes. General characteristics. Chem. Rev. 97, 3083 (1997)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Fathi A. G. Elsaid
    • 1
  • Salem Hamza
    • 1
  • Nashwa Rizk
    • 1
  • Hamdy A. B. Matter
    • 1
  • Elsayda A. S. Amerah
    • 2
  1. 1.Chemistry Department, Faculty of ScienceMenoufia UniversityShebin El-KomEgypt
  2. 2.Chemistry Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations