Arabian Journal for Science and Engineering

, Volume 38, Issue 5, pp 1217–1227 | Cite as

A Multi-criteria Multi-stakeholder Industrial Projects Prioritization in Gaza Strip

  • Salah R. Agha
  • Mohammed H. Jarbo
  • Said J. Matr
Research Article - Systems Engineering

Abstract

This research presents a decision support methodology for selection decisions in which Analytic Hierarchy Process (AHP) model is used to prioritize main industries in Gaza Strip not only from the view point of a single stakeholder and a single criteria, but also from that of multiple stakeholders and multiple criteria. Literature review, in addition to experts’ interviews were used to identify the main selection criteria and sub-criteria. These main criteria are economic criteria, financial criteria, marketing, technical, political and social, and environmental criteria. In addition, the alternatives were identified via Palestinian Federation of Industries (PFI). These alternatives are food industries, garment industries, chemical industries, plastic industries, wood industries, metal industries, and construction industries. Results show that different stakeholders choose different alternatives. The aggregate ranking of the industries under consideration is as follows: food, garment, construction, wood, chemical, metal, and plastics.

Keywords

MCDM AHP Industrial projects Prioritization Selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palestinian Central Bureau of StatisticsGoogle Scholar
  2. 2.
    Ho W.: Integrated analytic hierarchy process and its applications—a literature review. Eur. J. Oper. Res. 186(5), 211–228 (2008)MATHCrossRefGoogle Scholar
  3. 3.
    Vaidya O., Kumar S.: Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169(1), 1–29 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Parsaei H., Wilhelm M.: A justification methodology for automated manufacturing technologies. Comput. Ind. Eng. 16(3), 363–373 (1989)CrossRefGoogle Scholar
  5. 5.
    Yang C., Chen B.: Supplier selection using combined analytical hierarchy process and grey relational analysis. J. Manuf. Technol. Manage. 17(7), 926–941 (2006)CrossRefGoogle Scholar
  6. 6.
    Alidi A.S.: Use of the analytic hierarchy process to measure the initial viability of industrial projects. Int. J. Project Manage. 14(4), 205–208 (1996)CrossRefGoogle Scholar
  7. 7.
    Virginia D.J., Tabucannon M.T.: Multi-objective models for selection of priority areas and industrial projects for investment promotion. Eng. Costs Prod. Econ. 10, 173–184 (1986)Google Scholar
  8. 8.
    Tabucanon, M.T.: A model for identifying areas for industrial investment priorities for the board of investments. In: Proceedings of International Conference on Systems Modeling in Developing Countries, May 8–11, AIT-Bangkok (1978)Google Scholar
  9. 9.
    Lai V., Wong B.K., Cheung W.: Group decision making in a multiple criteria environment: a case using the AHP in the software selection. Eur. J. Oper. Res. 1(1), 134–144 (2002)CrossRefGoogle Scholar
  10. 10.
    Shang J. et al.: A unified framework for the selection of a flexible manufacturing system. Eur. J. Oper. Res. 2(85), 297–315 (1995)CrossRefGoogle Scholar
  11. 11.
    Archer N.P., Ghasemzadeh F.: An integrated framework for project portfolio selection. Int. J. Project Manage. 17(4), 207–216 (2002)CrossRefGoogle Scholar
  12. 12.
    Wang, Y.; Liu, J.; Elhag, Taha M.: An integrated AHP–DEA methodology for bridge risk assessment. Comput. Ind. Eng. 54(3), 513–525 (2007)Google Scholar
  13. 13.
    Weiwu W., Jun K.: Highway transportation comprehensive evaluation. Comput. Ind. Eng. 27(2), 257–259 (1994)CrossRefGoogle Scholar
  14. 14.
    Chin K.S., Chiu S., Tummala V.M.R.: An evaluation of success factors using AHP to implement ISO 14001 based EMS. Int. J. Qual. Reliab. Manage. 16(4), 341–361 (1998)CrossRefGoogle Scholar
  15. 15.
    Agha S.R.: Evaluating and benchmarking non-governmental training programs: an analytic hierarchy approach. Jordan J. Mech. Ind. Eng. 2(2), 77–84 (2008)Google Scholar
  16. 16.
    Andijani A.: A multi-criterion approach to kanban allocations. Omega 4(26), 483–493 (1998)CrossRefGoogle Scholar
  17. 17.
    Kwak N.K., Changwon L.: A multi-criteria decision making approach to university resource allocations and information infrastructure. Eur. J. Oper. Res. 2(110), 234–242 (1998)CrossRefGoogle Scholar
  18. 18.
    Ramanathan R., Ganesh L.: Using AHP for resource allocation problems. Eur. J. Oper. Res. 80(4), 410–417 (1995)CrossRefGoogle Scholar
  19. 19.
    Ulengin F., Ulengin B.: Forecasting foreign exchange rates: a comparative evaluation of AHP. Omega 22(5), 505–519 (1994)CrossRefGoogle Scholar
  20. 20.
    Korpela J., Tuominen M.: Inventory forecasting with a multiple criteria decision tool. Int. J. Prod. Econ. 45(3), 159–168 (1997)CrossRefGoogle Scholar
  21. 21.
    Saaty T.L.: The Analytic Hierarchy Process, 3rd edn. McGraw-Hill, New York (1980)MATHGoogle Scholar
  22. 22.
    Expert Choice Inc.; Expert Choice, Expert Choice Software and Manual. 4922 Ellsworth Ave., Pittsburgh (2004)Google Scholar
  23. 23.
    Saaty T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)MathSciNetGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2012

Authors and Affiliations

  • Salah R. Agha
    • 1
  • Mohammed H. Jarbo
    • 1
  • Said J. Matr
    • 1
  1. 1.School of Industrial Engineering, Faculty of EngineeringIslamic University-GazaGazaGaza Strip

Personalised recommendations