Skip to main content
Log in

Two-Dimensional Thermal and Structural Modelling of HSC Columns Exposed to Fire

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a thermal and structural analysis of HSC columns subjected to fire is presented. In thermal analysis, a mathematical and computational model simulating the two-dimensional coupled heat and mass transfer and related processes on high-strength concrete columns exposed to elevated temperatures has been developed. Contours, history, and distribution profiles for temperature, moisture content, and pore pressure are illustrated as model output. In order to validate the proposed thermal model, comparisons between numerical results obtained in the present study and the published experimental results have been performed. For structural analysis, a simple approach to predict the fire resistance of RC columns subjected to fire is adopted and the predictions are validated against experimental test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazant Z.P., Thonguthai W.: Pore pressure in heated concrete walls-theoretical prediction. Mag. Concr. Res. 31(107), 67–76 (1979)

    Article  Google Scholar 

  2. Hurst James, P.; Ahmed Gamal, N.: Modeling the thermal response of gypsum wallboard and stud assemblies subjected to standard fire testing. In: Proceedings of International Conference on Fire Research and Engineering, pp. 557–562. SFPE, Boston (1995)

  3. Ahmed Gamal N., Hurst James P.: Modeling the thermal behavior of concrete slabs subjected to the ASTM E119 standard fire condition. J. Fire Prot. Eng. 7(4), 125–132 (1995)

    Article  Google Scholar 

  4. Abdel-Rahman Ali K., Ahmed Gamal N.: Computational heat and mass transport in concrete walls exposed to fire. Int. J. Numer. Heat Transf. Part A, 29(4), 373–395 (1996)

    Article  Google Scholar 

  5. Ahmed Gamal N., Hurst James P.: Coupled heat and mass transfer phenomena in siliceous Aggregate concrete slabs subjected to fire. Int. J. Fire Mater. 21, 161–168 (1997)

    Article  Google Scholar 

  6. Hurst James P., Ahmed Gamal N.: Validation and application of a computer model for predicting the thermal response of concrete slabs subjected to fire. ACI Struct. J. 95(5), 480–487 (1998)

    Google Scholar 

  7. Abdel-Rahman Ali K., Ahmed Gamal N., Hurst James P.: Coupled heat and mass transport phenomena in concrete slabs subjected to fire′′, Bull. Fac. Eng. 29(2), 115–128 (2001)

    Google Scholar 

  8. Lie, T.T.; Lin, T.D.: Fire performance of reinforced concrete columns. In: ASTM STP 882. Fire Safety: Science and Engineering, pp. 176–205 (1985)

  9. Lie, T.T.; Rowe, T.J.; Lin, T.D.: Residual Strength of Fire-Exposed Reinforced Concrete Columns. American Concrete Institute, Special Publication SP-92-9, IRC Paper No. 1412, pp. 153–174 (1986)

  10. Dotreppe, J.-C.; Franssen, J.-M.; Bruls, A.; Vandevelde, P.; Minne, R.; Van Nieuwenburg D.; Lambotte, H.: Experimental research on the determination of the main parameters affecting the behavior of reinforced concrete columns under fire conditions. Mag. Concr. Res. 49(179), 117–127 (1996)

    Google Scholar 

  11. Dotreppe J.-C., Franssen J.-M., Vanderzeypen Y.: Calculation method for design of reinforced concrete columns under fire conditions. ACI J. 96(1), 9–18 (1999)

    Google Scholar 

  12. Tan KH, Yao Y.: Fire resistance of four-face heated reinforced concrete columns. J Struct. Eng. 129(9), 115–128 (2001)

    Google Scholar 

  13. Kodur V.K.R., Cheng F.P., Wang TC.: Predicting the Fire resistance behaviour of high strength concrete columns. Cem. Concr. Compos. 26, 141–153 (2004)

    Article  Google Scholar 

  14. Tan, KH.; Tang, CY.: Interaction formula for reinforced concrete columns in fire conditions. ACI J. 101(1) (2004)

  15. Tan, KH; Yao, Y.: Fire resistance of reinforced concrete columns subjected to 1-, 2-, and 3-face heating. ASCE 130(11), 1820–1828 (2004)

    Google Scholar 

  16. Capua Di.D., Mari A.R.: Non linear analysis of reinforced concrete cross-sections subjected to fire. Fire Saf. J. 42, 139–149 (2007)

    Article  Google Scholar 

  17. Jau W.C., Huang K.-L.: A study of reinforced concrete corner columns after fire. Cem. Concr. Compos. 30, 622–683 (2008)

    Article  Google Scholar 

  18. El-Fitiany, S.F.; Youssef, M.A.: Assessing the flexural and axial behavior of reinforced concrete members at elevated temperatures using sectional analysis. Fire Saf. J. doi:10.1016/j.firesaf.2009.01.005 (2009)

  19. Han C.-G., Han M.-C., Heo Y.-S.: Improvement of residual compressive strength and spalling resistance of high-strength RC columns subjected to fire. Constr. Build. Mater. 23, 107–116 (2009)

    Article  MATH  Google Scholar 

  20. Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. Introduction to Ceramics, pp. 613–639. Wiley, New York (1976)

  21. Harmathy, T.Z.: Properties of Building Materials, pp. 1-378–1-391. SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy (1988)

  22. Jacob, M.: Heat Transfer, vol. 1, pp. 532–543. Wiley, New York (1949)

  23. Drysdale, D.: An Introduction to Fire Dynamics, vol. 52–57, pp. 150–151. Wiley, New York (1985)

  24. Ahmed Gamal, N.; Hurst James, P.: An analytical approach for investigating the causes of spalling of high-strength concrete at elevated temperatures. In: International Workshop on Fire Performance of High-Strength Concrete. NIST Special Publication 919. NIST, Gaithersburg 13–14 Feb., vol. b.6, pp. 95–108 (1997)

  25. ASTM Designation E119-95a: Standard Methods for Fire Tests of Building Construction and Materials, Sec. 4, 04.07. ASTM, Philadelphia (1996)

  26. Landkard, D.R.; Birkimer, D.L.; Fondriest, F.F.: Effects of moisture content on the structural properties of Portland cement concrete exposed to temperature up to 500 °F. Temper. Concr. ACI SP25, 59–102 (1971)

  27. Khoury G.A.: Compressive strength of concrete at high temperature: a reassessment. Mag. Concr. Res. 44(161), 291–309 (1992)

    Article  Google Scholar 

  28. Crook D.N., Murray M.J.: Regain of strength after firing of concrete. Mag. Concr. Res. 22(72), 149–154 (1970)

    Article  Google Scholar 

  29. Li G.H., Zheng S.O., Yang Y.K.: Experimental research on the properties of gravel concrete after high temperature. Concr. J. China 39(3), 16–17 (1993)

    Google Scholar 

  30. Rostasy P.S., Weiss R., Weidermann G.: Changes of pore structure of cement mortars due to temperature. Cem. Concr. Res. 10, 157–164 (1980)

    Article  Google Scholar 

  31. Tanaka, H.: Property after being heated and re-hydration of hardened cement past. Cem. Concr. April:34–40 (1983)

  32. Dias, W.P.; Khoury, G.A.; Sullivan, P.J.: Mechanical properties of hardened cement past exposed to temperature up to 700 °C. ACI Mater. J. 87(2), 160–165 (1990)

    Google Scholar 

  33. Thienel K.C., Rostasy F.S.: Strength of concrete subjected to high temperature and biaxial stress: experiments and modelling. Mater. Struct. 28, 575–581 (1995)

    Article  Google Scholar 

  34. Youssef M.A., Moftah M.: General stress-strain relationship for concrete at elevated temperature. Eng. Struct. 29, 2618–2636 (2009)

    Article  Google Scholar 

  35. prEN 1992-1-2: Eurocode 2 Bemessung und konstruktion von stahlbeton-und spannbetontragwerken. Teil 1-2: Allgemeine Regeln-Tragwerksbemessung für den Brandfall. Europäisches Komitee fürNormung (2003)

  36. Abrams, M.S.: Compressive Strength of Concrete at Temperatures to 1600 °F, pp. 33–58. American Concrete Institute, Special Publication SP-25, Temperature and Concrete, Detroit (1971)

  37. Lie T.T.: Structural Fire Protection. American Society of Civil Engineers, New York (1992)

    Google Scholar 

  38. Malhotra, H.L.: Effect of temperature on the compressive strength of concrete. Mag. Concr. Res. 8:85–94 (1956)

    Google Scholar 

  39. ISO 834: Fire Resistance Test-Elements of Building Construction. International Standard Organization (1975)

  40. Lie, T.T.; Myllimaki, J.: Fire Resistance Test of a Square Reinforced Concrete Column. NRCC, Internal report No. 619 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, K.A., Abdel-Rahman, A.K. Two-Dimensional Thermal and Structural Modelling of HSC Columns Exposed to Fire. Arab J Sci Eng 38, 2009–2022 (2013). https://doi.org/10.1007/s13369-012-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0341-z

Keywords

Navigation